ME 211 Statics and
Strength of Materials

Transformations of Stress and Strain

1 ——_——————
H The most general state of stress at a point may be
I ntrOd uction represented by 6 components,

0y,0,,0,  normalstresses
Tyys Tyzs Tz Shearing stresses

(Note: 7y, =T, Ty, =75y, Top =Ty;)

Same state of stress is represented by a different
set of components if axes are rotated.

The first part of the chapter is concerned
with how the components of stress are
transformed under a rotation of the
coordinate axes. The second part of the
chapter is devoted to a similar analysis of the
transformation of the components of strain.

Fig. 7.1 General state of stress at a point: (a)
referred to {xyz}, (b) referred to {x'y'z’}.
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Plane Stress - state of stress in which two faces of the
cubic element are free of stress. For the illustrated
i example, the state of stress is defined by

Oy, 0y, Txy and o, =7, =7, =0.

Fig. 7.2 Non-zero stress components
for state of plane stress.

State of plane stress occurs in a thin plate subjected to
-y a8 forces acting in the midplane of the plate.

1F;
Fig. 7.3 Example of plane stress: thin
plate subjected to only in-plane loads.

State of plane stress also occurs on the free surface
| of a structural element or machine component, i.c.,
' at any point of the surface not subjected to an
. external force.

[ >
- N

Fig. 7.4 Example of plane stress: free
surface of a structural component.

Transformation of Plane Stress

Consider the conditions for equilibrium of a

prismatic element with faces perpendicular to
the x, y, and x " axes.

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

S Fy=0=0yAd—0,(Adcosd)cosd — rxy(AA cosf)sind
-0, (A4sin@)sin@ - rxy(AA sin@)cosd

2Fy=0=ru,A4+ o, (A4cosf)sin - Tay (AdcosB)cos @
- y(AA sin@)cosd + Tay (Adsin@)sin@

The equations may be rewritten to yield

TN o,to o,—0O .

7y (A4 cos 0)Y oxr:7y+7ycosZ€+ersm29

R 2 2

AA sin 6)* +
o,to o,—0O

7, (A4 sin oy :M—Mcosze—rxy sin260

(b) 2 2

Fig. 7.6 Stress transformation equations are determined Ox~0

by considering an arbitrary prismatic wedge element. (a) TX’)’
Geometry of the element. (b) Free-body diagram.

—Ty sin26 + 7, cos 20




Transformation of Plane Stress
Principal Stresses

The transformation equations for two-dimensional stress indicate that the normal stress o, and shearing stress T,.,
vary continuously as the axes are rotated through the angle 8. Therefore there should be minimum and maximum
values for the stress components for particular orientations of x’ - y’. We can find the orientation for those values
by setting do,./d6 = 0 from the previous page. By doing so, we have

-(o,-0,)sin26+27, cos26 =0

Which gives 2%
tan26, = ——

o, -0

¥

Since tan 26 = tan(rt + 26 ), there are two values 8, describing directions. These are the principal directions along
which the maximum and minimum normal stresses (o, and o,) act.

(0, -0,)sin26+27, c0s26 =0

States that t,,, = 0 on a principal plane (check the transformation equation in the previous page). A principal plane
is thus a plane of zero shear. When you substitute tan20p equation into Ox’ relation:

2
c,.+0, og.—0, 5
O max.min = F12 = 2 + 7 + Ty

Pri nCi pa| Stresses The previous equations are combined to yield

parametric equations for a circle,

b (Jx' _O-ave)2 + T)%'y' = Rz

M where

o B \ [ O,+0o

y
2

Oave =

Principal stresses occur on the principal

Fig. 7.7 Circular relationship of planes of stress with zero shearing stresses.
transformed stresses.
y y
Omax,min =
% 2t
) H tan26,, = — v
a, “. @ = ’ : & O-X_Gy

Note : defines two angles separated by 90°

T

Fig. 7.9 Principal stresses.




Maximum Shearing Stress

Fig. 7.10 Maximum shearing stress.

Maximum shearing stress occurs for oy =0,

2
O_X_O_y 2
Tmax =R = ( D j + Ty
O,—0O
tan26, = -7
2ty

Note : defines two angles separated by 90° and
offset from 6, by 45°
oy to,
2

- —
o _o—ave_

Concept Application 7.1

10 MPa

4—> 40 MPa

Fig. 7.11a Plane stress element.

A
|
[ 50 MPa

For the state of plane stress shown,
determine (a) the principal planes,
(b) the principal stresses, (c) the
maximum shearing stress and the
corresponding normal stress.

SOLUTION:
Find the element orientation for the principal
stresses from
27
tan20,, = i
0y =0,
Determine the principal stresses from

2
o, to
X yi[ ]+rfy

2
Calculate the maximum shearing stress with

oy —0y
2

Omax,min =

2
oy -0
- Y 2
Tmax = ( 2 j Ty
o = Oy +0,
2




10r SOLUTION:
Find the element orientation for the principal
—% 5 40 MPa
‘ ,i : stresses from
e,
| | 5 %a 2’[
[ tan20, =2 = 2+40) _; 333
—— oy—0o, 50-(-10)
20p =53.1°,233.1°
Fig. 7.11a Plane stress element. 0 =266°116.6°
o, =+50MPa 7, =+40MPa £
o, =—10MPa Determine the principal stresses from
Tpin = 30 MPa 2
_oy+0o, 0y =0, 5
O max,min = D * ( 2 j +Txy
=20++/(30)? +(40)?
Omax = 70MPa
Omin = —-30MPa
Fig. 7.11b Plane stress element
oriented in principal directions.
10 MPa
Calculate the maximum shearing stress with
4—> 40 MPa

A

2
‘ A Oy =0, 5
i R e
' = (30) + (40)?
Tax = SOMPa

Fig. 7.11a Plane stress element.

o, =+50MPa Tyy = +40MPa 0, = Qp —45
o, =—10MPa 0, = —184°,71.6°
o'= ?l) MPa
/ The corresponding normal stress is
r =50 MPa . Lo +0,  50-10
# O =0gve = 2 - 2
- ] 0,= —18.4°
[ o'=20mpa o' =20MPa

Fig. 7.11d Plane stress element
showing maximum shear orientation.




Sample Problem 7.1 SOLUTION:

Determine an equivalent force-couple
system at the center of the transverse
section passing through H.

Evaluate the normal and shearing stresses
at H.

Determine the principal planes and
calculate the principal stresses.

A single horizontal force P of with a
magnitude of 150 Ib is applied to end D
of lever ABD. Determine (a) the normal
and shearing stresses on an element at
point A having sides parallel to the x and
v axes, (b) the principal planes and
principal stresses at the point H.

SOLUTION:

Determine an equivalent force-couple
system at the center of the transverse
section passing through H.

P=1501b
T =(1501b)(18in) = 2.7kip - in
M, =(1501b)(10in)=1.5kip -in

z x

Fig. 1 Equivalent force-couple system

acting on transverse section containing Evaluate the normal and Shearing stresses
point H. \ o at H.
17 Mc  (15kip-in)0.6in)
o oy =4 =
‘ : / Z7Z’(0.611‘1)
—t ‘ —> 0, N % _ +(2.71k1p . 1n?(0;t61n)
-~ 57{(0.6m)

0, =0 o, =+8.84ksi 7, =+7.96ksi|

Fig. 2 General plane stress element (showing
positive directions).




o = 4.68 ksi

min

Fig. 4 Stress element at point H
oriented in principal directions.

Determine the principal planes and

calculate the principal stresses.
21y, 2(7.96) 18

oy -0, 0-884

26, =-61.0°,119°

0, =-30.5°,59.5°

tan29p =

Omax,min = 2 2
_0+8.84 [o - 8.84)2 L (7,96
2 2 '

Omax = +13.52ksi
Omin = —4.68ksi

~—H0#

T
Koy +7) ‘
B[} A
— 3 R -
£l Ty
‘ Xl ,—7,)
Tty

Lo _0)
3.0,

(b)
Fig. 7.12 (a) Plane stress element and the

Mohr’s Circle for Plane Stress
With the physical significance of Mohr’s circle

for plane stress established, it may be applied
with simple geometric considerations. Critical
values are estimated graphically or calculated.

For a known state of plane stress ~ 0x,0y,7y,
plot the points X and Y and construct the

circle centered at C.

2
O, —0O
2
R= [ x2 yj +Txy

The principal stresses are obtained at 4 and B.

Omax,min = Oave £ R
2t
tan26,, = i
0,—0,

The direction of rotation of Ox to Oa is
the same as CX to CA.

orientation of principal planes. (b) corresponding Mohr's circle.



With Mohr’s circle uniquely defined, the state of
stress at other axes orientations may be
depicted.

For the state of stress at an angle 8 with respect
to the xy axes, construct a new diameter XY’
at an angle 26 with respect to X7.

Normal and shear stresses are obtained
’\ from the coordinates XY

Fig. 7.13 (a) Stress element referenced to xy axes,
transformed to obtain components referenced to x’y’ axes.
(b) Corresponding Mohr's circle.

Generation of Mohr’s Circle for Two-Dimensional Stress

A graphical technique permits the rapid transformation of stress from one plane to another and leads to the
determination of the maximum normal and shear stresses. In this approach, trandformation equations are
depicted by a stress circle, called Mohr’s circle. In the Mohr representation, the normal stresses obey the sign
convention described before. However, for the purposes of constructing and reading values of stress from
Mobhr’s circle, the sign convention for shear stress is as follows:

If the shearing stresses on opposite faces of an element would produce shearing forces that result in a
clockwise couple, as shown below, these stresses are regarded as positive. Accordingly, the shearing stresses
on the y faces of the element below are taken as positive (as before), but those on the x faces are now
negative.

VT Igy

W

1 = x1'( Txy

l( | ‘ aF = oy




Given g,, 0,, and T,, with algebraic signs in accordance with this sign convention, the procedure for
obtaining Mohr’s circle is as follows:
T

i B AG, +o’:%(cx+ay)»1
D —
)N =]

7 W 1(+1
x, Txy B(oy, 7,) . ! C
// Oy [0y S 1 Tmax
Mo |'*, i GNP
T X5 B e ~
T 1 | \\{ 61~ I ~~x 1[€]L
“Tmax : Ng : A -
(a) ! ~ (c)
X |~ AlC—Ty)
'E
04
(b)

Figure 1.15. (a) Stress element; (b) Mohr’s circle of stress; (c) interpretation of positive shearing stresses.

- Establish a rectangular coordinate system, indicating +t and + o.

- Locate the center C of the circle on the horizontal axis at a distance % (o, + 6,) from the origin.

- Locate point A by coordinates o, and -, . We have placed A on +x face and B on +y face.

- Draw a circle with center at C and of radius equal to CA.

- Draw line AB through C.

- The angles on the circle are measured in the same direction as 8 is measured in Fig. 1.15a. An angle
of 20 on the circle corresponds to an angle of 8 on the element.

The state of stress associated with the original x and y planes corresponds to points A and B on the circle,
respectively. Points lying on diameters other than AB, such as A’ and B’, define states of stress with respect to any
other set of x" and y’ planes rotated relative to the original set through an angle 6

Points A; and B, on the circle locate the principal stresses and provide their magnitudes as defined by equations,
while points D and E represent the maximum shearing stresses. The radius of the circle is

Where CA=CF*+ 4F? (@)

CF=3(c.-0,), AF=t1

xy

Thus, the radius equals the magnitude of the maximum shearing stress. Mohr’s circle shows that the planes of
maximum shear are always located at 45° from planes of principal stress.

The use of Mohr’s circle is illustrated in the next example.




Mohr’s Circle Example O

30 MPa

At a point in the structural member, the stresses are represented as <—l %0 MPa
s

X

Find by employing Mohr’s circle:

(a) the magnitude and orientation of the principal stresses (a)

(b) the magnitude and orientation of the maximum shearing stresses and associated normal stresses.

(c) In each case, show the results on a properly oriented element; represent the stress tensor in
matrix form.

The center of the circle is at (40 + 80)/2 = 60 MPa on the o axis. Stress state at +x face or point A =
(+80, -30) and stress state on +y face or point B = (+40, +30). Connect CA or radius or AB for diameter
and draw the Mohr’s circle.

T
(MPa)
0, = 60 + sqrt(302+(80-60)?) = 60 +36.05 = 96.05MPa
0, =60 - sqrt(302+(80-60)?) =60 - 36.05 = 23.95MPa
o
0,,=56.31/2=28.15°
©,,= (180 +56.31)/2 = 118.16°
Mohr’s circle clearly indicates that O, locates the o, plane
The maximum shearing stresses are given by points D and E. T
(MPa)

As calculated in the previous page R = 36.05MPa

Therefore t,,,, = 36.05MPa
20,,=20,,+90 = 146.31 > 0, = 73.15° 5 o (MPa)
20,,=146.31+ 180 = 326.31 > O, = 163.15°

A(80,-30)

X' # YN 73.15° e
A7 ~.
P A -
‘7/ /L:‘O MPa

96.05 MPa
23.95 MPa ——
60 MPa

(c) (d)

We may now describe the state of stress at the point in the following matrix forms:

80 30 96.05 0 60  -36.06
30 40 | 0 2395 | -36.06 60




|
Mohr’s Circle for Plane Stress

Mohr’s circle for centric axial loading:

[,L
P A
o o Fc. i e Vi
L : ‘
P 0= PiA—

Oy =—, O'yZTXyZO @ ® o' —R=7 =

R

¥ % x v P

Fig. 7.17 (a) Member under centric axial load. (b) Mohr’s circle. (c) Element showing planes of maximum shearing stress.

Mohr’s circle for torsional loading: o

Fig. 7.18 (a) Member under torsional load. (b) Mohr’s circle. (c) Element showing orientation of principal stresses.

Co t Application 7.2
Copyright © McGraw-Hill Education. Permission required for reproduction or display. n ce p p p I ca I n L4

7(MPa))

|n—>‘ ~
Y

Fig. 7.16 (a) Plane stress element.

(b) Corresponding Mohr's circle. SOLUTION:

For the state of plane stress Construction of Mohr’s circle

considered in Concept Application oy +0y,  (50)+(-10)

7.1, (a) construct Mohr’s circle, (b) Gave =5 % D =20MPa
determine the principal stresses, (c) CF=50-20=30MPa FX =40MPa
determine the maximum shearing 5 5

stress and the corresponding normal R =CX =1/(30)" +(40)" =50MPa

stress.




7(MPa))

|x»a| -
Y

1A a(MPa)

]
1

Fig. 7.16 (b) Mohr’s circle showing face X and Y.

‘Copyright © MoGraw-Hil Educatin. Pemission recured forreproducon or display

Fig. 7.16 (c) Stress element orientations for
principal and maximum shear orientations.

Principal planes and stresses

Omax = 04 =0C +CA=20+50

Omax = 70MPa

Omin = OB = OC — BC = 20— 50

Omin = —30MPa

tan 26 =E=4O
P cp 30
20, =53.1°

‘Copyright © McGraw-Hill Education. Permission required for reproduction or display.

| x

Fig. 7.16 (c) Stress element orientations for
principal and maximum shear orientations.

Maximum shear stress
Oy =0, +45°

Tmax =~

Tmax = 50 MPa

7(MPa))

To= 50
o ¢ / I
T Fi-20,-531

(d)

|
L4

Fig. 7.16 (d) Mohr’s circle used to determine
principal and maximum shearing stresses.

r_
o _O_ave




Sample Problem 7.2

Y|
T(i() MPa

A \Iy 100 MPa

A I

—> 48 MPa

|

For the state of stress shown,
determine (a) the principal
planes and the principal stresses,
and (b) the stress components
exerted on the element obtained
by rotating the given element
counterclockwise through 30°.

Ty = 80 MPa

X(100, 48)

U'HHH

28 MPa [~
Y(60, —48) *

- — 139 MP. -
Opax = 132 MPa

Fig. 1 Mohr’s circle for given stress state.

SOLUTION:
Construct Mohr’s circle

Ox+0, 100+60
Cave = 5 = 5

R=+(CF +(FX)* =20 + (48)* = 52MPa

=80MPa

7(MPa))
0 = 80 MPa

‘ X(100, 48)
8=

RN
2
ol &l )20\ 4 o (vpw)
' T

Pimin N /| 52MPa
28 MPa [<*—| '\ i |

Y(60, —48) * ‘

<~ Oy = 132 MPa—|

Fig. 1 Mohr’s circle for given stress state.

Principal planes and stresses

tan20, = AF = ﬁ =
PCcF 20
20, =674°

Hp =33.7° clockwise‘

t
—tli—
=

6, =337
N ( Opin = 28 MPa
= 132 MPa

\,mfrum\

Fig. 2 Orientation of principal stress element.

Omax =0A=0C+CA  Gpay =04=0C - BC
=80+52 =80-52

Omax = +132MPa Omin = +28MPa

|
7(MPa) )




‘ & = 180° — 60° — 67.4°
™ (M) 2 ¢ =526 .= 111.6 MPa «

A\

Fig. 4 Stress components obtained by rotating
Fig. 3 Mohr’s circle analysis for element rotation of original element 30° counterclockwise.

30° counterclockwise. ¢ —180° — 60° — 67.4° = 52.6°
Stress components after rotation by 30° B oo
oy =0K =0C - KC =80-52c0s52.6°

Points X’ and Y~ on Mohr’s circle that

correspond to stress components on the oy =OL=0C+CL=80+52c0s52.6°
rotated element are obtained by rotating Ty = KX’ =525in52.6°

XY counterclockwise through

20 =60° oy =+48.4MPa
oy =+111.6MPa
7, =41.3MPa

. |
General State of Stress

Consider the general 3D state of stress at a point and
the transformation of stress from element rotation

State of stress at O defined by:  0,,0,,0.,74,,7,.,7

Consider tetrahedron with face perpendicular to the
line ON with direction cosines: A, 4,,4.

The requirement Y F,=0 leads to,

Fig. 7.19 Stress tetrahedron at point Q with _ 2 2 2
three faces parallel to the coordinate planes. On O-x/?'x + O-y/?'y + O-ZJ’Z
b +20,, A A, + 27, A4, + 20, A, Ay
Form of equation guarantees that an element orientation

can be found such that
o, = O'a/lg + O'b/112, + 0'0/15

These are the principal axes and principal planes
and the normal stresses are the principal stresses.

Fig. 7.21 General stress element oriented to principal axes.




Stresses in Thin-Walled Pressure Vessels

Cylindrical vessel with principal stresses
o, = hoop stress

'
/

7 y 0, = longitudinal stress
Fig. 7.40 Pressurized
cylindrical vessel. Hoop stress:
/ Y F, =0=0y(2tAx)—- p(2r Ax)
,r_”\':, Qf: 0'1:%

t
Fig. 7.41 Free-body diagram to determine hoop stress in a
cylindrical pressure vessel.
y

Longitudinal stress:
%A YF,=0= 0'2(27rrt)—p(7rr2)

L) } "
/\ st 0'2=p—
- 2

pdA

Fig. 7.42 Free-body diagram to determine longitudinal stress.

o1 :20'2

Stresses in Thin-Walled Pressure Vessels

) "
D .
‘ —( Points 4 and B correspond to hoop stress, o,
Pa . and longitudinal stress, o,
3 5 l
! 202
4 : ! |
of B ! A o . . .
; T 1 Maximum in-plane shearing stress:
E . _ la _pr
. B max(in—plane) ) 2 41
DU BEPS
oy = 20, Maximum out-of-plane shearing stress
corresponds to a 45° rotation of the plane
Fig. 7.43 Mohr’s circle for element of . . .
cylindrical pressure vessel. stress element around a longitudinal axis

pr

Tmax =02 = 2




\ ) -

\\\7_// - \,uH
Fig. 7.45 Free-
body diagram to
determine

spherical pressure
vessel stress.

Fig. 7.44
Pressurized
spherical vessel.

9]

[e] B,A o

f— 0 =0y —

Fig. 7.46 Mohr's circle for element of spherical pressure vessel.

Spherical

C71=C72=f

Mohr’s ci

transformations reduces to a point

o =01 =0y = constant

Tmax(i

Maximum out-of-plane shearing

stress

_1
Tmax _Eo-l - 4

pressure vessel:
2¢

rcle for in-plane

n-plane) = 0

pr

Fixed support

restrained by fixed supports.

Fig. 7.47 Plane strain example: laterally

Transformation of Plane Strain

Plane strain - deformations of the material
take place in parallel planes and are the

same in

Plane strain occurs in a plate subjected along
its edges to a uniformly distributed load and

restraine
laterally
supports

components of strain :

Example

uniformly distributed transverse loads.
State of plane stress exists in any
transverse section not located too close to
the ends of the bar.

Fig. 7.48 Plane strain example: bar of infinite length in z direction.

each of those planes.

d from expanding or contracting
by smooth, rigid and fixed

Ex €y Vxy (5227/2)5:72)/:0)

: Consider a long bar subjected to




I~ As(1+ s!/>[b.’]

As (1 +€,)

o
R

X

|
Transformation of Plane Strain

State of strain at the point Q results in
different strain components with respect
to the xy and x 'y’ reference frames.

e0)=¢, cos” 0+ &y sin 0+ Vxysindcosd
eop = €(45°)= %(gx +&, + ;/xy)

Vxy =2¢0p —(gx +gy)

Fig. 7.49 Plane strain element: undeformed and deformed.

Applying the trigonometric relations used

THry for the transformation of stress,
vy v _ ExteE, &x—¢ 4
_éxTéy x "¢y Xy .
\ o - \ As(L +€,/,>‘( Qf\/\d &y = S + cos20 + Y sin 26
A . =
As Qe \ T_ /%-/(1 +
s\l 2 %y Aslten) ExtEy Ex—&y Yy
As X g,y =——————""¢0820 ——=sin20
2 ; Y 2 2 2
ko te
o * 0 & 7x'y' Ex — &y . Vxy
Fig. 7.50 Transformation of plane strain element in 5 == 5 sin 26 + cos20
undeformed and deformed orientations.

1)
1
Yot 7‘”)\
0 C\ €
, 1
Xleem 37)
3

Fig. 7.53 Mohr’s circle for plane strain.
2]

(a)

Fig. 7.54a Mohr’s circle for plane strain, showing principal
strains and maximum in-plane shearing strain.

Mohr’s Circle for Plane Strain

The equations for the transformation of plane
strain are of the same form as the equations
for the transformation of plane stress -
Mohr's circle techniques apply.

Abscissa for the center C and radius R,

2]

Principal axes of strain and principal strains,

&t ey Ex—€
2

Yy
2

Eave =

tan 2:917 = Ty

Ex =&y
Emax = Eave T R Emin = €ave — R

Maximum in-plane shearing strain,

Vmax =2R = \(gx_gy)z-'_}/fy




Measurements of Strain: Strain Rosette

Strain gages indicate normal strain through
changes in resistance.

With a 45° rosette, ¢, and &, are measured
directly. y,, is obtained indirectly with,

7xy :2803 —(gx +gy)

Fig. 7.64 Strain rosette that measures normal

<trains in direction of x. y, and bisector OB, Normal and shearing strains may be obtained

from normal strains in any three directions,

& =&y cos? O +e, sin? 01 + 7y sind cos 6

—_

&) =&y cos? 0 +¢, sin’ 0 + ¥ xy8in6, cos b,

2 .2 .
Fig. 7.65 Generalized strain gage rosette arrangement. &3 =¢&ccos” O3 + &ysin 05 + Vxy S 05 cos 3

Example 1:

30 MPa 50 MPa

70 MPa
”

- =—p 30 MPa + 45°

(i) (ii)
Determine the principal planes and principal stresses for the state of plane stress

resulting from the superposition of the two states of plane stress shown.

* Rotate element (ii) by 45° clockwise




30 MPa

50 MPa
Tensi
7oMP ’ ension*) Compression(-)
f
45°
< =—p 80 MPa 4 A(50,0), B(-30,0)
/ Shear0  Shear0
(i) (i) T B(10,40)
¢ Center and radius of the circle are calculated
_ %J’SO —10  C-(10,0)
R = (50-10) =40 B(-30,0)

A(50,0)

Rotate element (ii) by 45 clockwise
459 on stress state, 90° on Mohr’s circle

After 90° rotation we get:  A’(10,-40), B'(10,40)

90°

30 MPa 50 MPa
70 MPa ’
45°
- =p 30 MPa +
(i) (i)
After 45° rotation of stress state we get: A’(10,-40), B’(10,40)
Element (ii) becomes after 45 rotation
- 10 MP
10 MPa W) ews) °
30 MPa
Summing (i)
and new (ii) < =P 90 MPa

we get




10 MPa Tension(+)

Tension(+) 90+ 10
30 MPa 1 C= > =50
Y X(90,30f, Y(10,-30)
- x J|= 90 mpa ! R = /(90 - 50)2+302 = 50
CW(+) CCW(-)
— T

v
* Find principal stresses and planes
* Draw Mohr’s circle for new stress state
* Principal stresses are calculated using center
and radius values
0, =C+R=50+50=100MPa
0, =C—R=50-50=0MPa

* Find principal planes

tan(26,) = 5o 26, = 36.87°

, = 18.4°(CW) or 71.6°(CCW)

T
10 MPa
30 MPa X(90, 30)
Y
< X ||= 90 mpa o1
— €(50,0) X
v
6, = 18.4°(CW) or 71.6°(CCW)

* XY is the state after the superposition
* We rotate this state 18.4 degrees CW to get
the principal state

= S
& = 1008158 Principal state without shear bp = 18.4°
o, = 0MPa
S

7= 0MPa 100 MPa




1 ———————————.
Example 2

oz Determine
a) Max in-plane shear stress at A
b) The principal stress at A

3 The effect of the load should be

transferred to the plane where A stands
(Cross-section at the bottom)
e 180 cm
X 30
y &

15
A S 30 =" M, =60x18
o B =108 Nm

/\ 7 b N 10

30cm / 10 em
\ 30cm VX = 60N

|
30
———————>
I = —=03x(03) = 675 x 10-5 m#
T 30 o My=60x1s
P bbb 6 [ v 5 =108 N
) 675 x 10-6 0.8 x 10° Pa [¢] I o m
=—0.8 MPa
= —800 kPa V, = 60N
30
>
Qa=(03x0.1)x0.1
=3x10"3m3
30| - ____ _
_VQ_ 60x(3x107%) 10
4= T 6752105 %023 10} —
T4 = 88.89 x 10% Pa = 88.89 kPa




—_— A88.89 kPa

-800 kpa—bj A <= -800 kPa
88.89 kPa
T
Y(0, 88.89)
R
C(-400,0) 88.89
B /A

X(-800,-88,89)

X(—800,-88.89)

Y (0, +88.89)

R = /4002 + 88.892
R = 410 kPa

| Tmax = 410 kPa |

0; = —400 + 410 = 10 kPa at A
0, = —400 — 410 = —810 kPa at B

Example 3

Determine normal and shearing stress at
a) pointH
b) point)

* A combined loading example.
* Move the 4 loads with their moments to
the plane that includes point H and J




The stresses are asked to be calculated on
xyz axes. No rotation!

P=420N

YF, - P =120+ 300

YF, > V,=50N
YE - V,=250N
M, - M, = 250x0.15 — 120x0.16
M, = +18.3 Nm

YM, > M, = 120x0.1+ 50x0.15
M, = +19.5 Nm

y
H A = 20x1073x40x1073
A = 8x10"*m?
z 20mm 1
I, = —40x1073x(20x1073)3 I, = 2.67x1078 m*
.J 12
\ L= i20x10-3x(40x10-3)3 I,=1.07x10"" m*
\ Y12 y :
40mm
a) pointH
_ =P M,x10x1073  —420 N 19.5x10x1073 T
%H = I T 8x10-% ' 267x10-% a
3V, 3 250 v d .
e = oes not result in shear at H
=34 2eea0s - O A7 MPa y
b) point J
=R Myx20x10™°  M,x10x1073  —420  18.3x20x103 19.5x10x107% _ L4 3P
=" I, I,  8x10* ' 1.07x10~7 267x10-8 e

=0 (Jis at the corner)






