
Transformations of Stress and Strain

Introduction The most general state of stress at a point may be 
represented by 6 components,
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Same state of stress is represented by a different 
set of components if axes are rotated. 

The first part of the chapter is concerned 
with how the components of stress are 
transformed under a rotation of the 
coordinate axes.  The second part of the 
chapter is devoted to a similar analysis of the 
transformation of the components of strain.

Fig. 7.1  General state of stress at a point: (a) 
referred to {xyz}, (b) referred to {x’y’z’}.
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State of plane stress also occurs on the free surface 
of a structural element or machine component, i.e., 
at any point of the surface not subjected to an 
external force.

Plane Stress - state of stress in which two faces of the 
cubic element are free of stress.  For the illustrated 
example, the state of stress is defined by 

.0,,    and   xy  zyzxzyx 

State of plane stress occurs in a thin plate subjected to 
forces acting in the midplane of the plate.

Fig. 7.4  Example of plane stress: free 
surface of a structural component.

Fig. 7.3  Example of plane stress: thin 
plate subjected to only in-plane loads.

Fig. 7.2  Non-zero stress components 
for state of plane stress.

Transformation of Plane Stress
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Consider the conditions for equilibrium of a 
prismatic element with faces perpendicular to 
the x, y, and x’ axes.
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The equations may be rewritten to yield

Fig. 7.6  Stress transformation equations are determined 
by considering an arbitrary prismatic wedge element. (a) 
Geometry of the element. (b) Free-body diagram.



Transformation of Plane Stress
Principal Stresses

The transformation equations for two-dimensional stress indicate that the normal stress σx′ and shearing stress τx′y′
vary continuously as the axes are rotated through the angle θ. Therefore there should be minimum and maximum 
values for the stress components for particular orientations of x′ - y′. We can find the orientation for those values 
by setting dσx′/dθ = 0 from the previous page. By doing so, we have

Which gives

Since tan 2θ = tan(π + 2θ ), there are two values θp describing directions. These are the principal directions along 
which the maximum and minimum normal stresses (σ1 and σ2) act. 

States that τx’y’ = 0 on a principal plane (check the transformation equation in the previous page). A principal plane 
is thus a plane of zero shear. When you substitute tan2θp equation into σx’ relation: 

Principal Stresses The previous equations are combined to yield 
parametric equations for a circle,
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Principal stresses occur on the principal 
planes of stress with zero shearing stresses.
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Fig. 7.9  Principal stresses.

Fig. 7.7 Circular relationship of 
transformed stresses.



Maximum Shearing Stress
Maximum shearing stress occurs for avex  
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Fig. 7.7 Circular relationship of transformed stresses.

Fig. 7.10 Maximum shearing stress.

Concept Application 7.1

For the state of plane stress shown, 
determine (a) the principal planes, 
(b) the principal stresses, (c) the
maximum shearing stress and the 
corresponding normal stress.

SOLUTION:
Find the element orientation for the principal 

stresses from 

yx

xy
p 







2
2tan

Determine the principal stresses from

2
2

minmax, 22 xy
yxyx 


 







 





Calculate the maximum shearing stress with

2
2

max 2 xy
yx 


 







 


2
yx 






Fig. 7.11a Plane stress element.



SOLUTION:
Find the element orientation for the principal 

stresses from 
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Fig. 7.11a Plane stress element.

Fig. 7.11b Plane stress element 
oriented in principal directions.
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Fig. 7.11a Plane stress element.

Fig. 7.11d Plane stress element 
showing maximum shear orientation.



Sample Problem 7.1

A single horizontal force P of with a 
magnitude of 150 lb is applied to end D 
of lever ABD.  Determine (a) the normal 
and shearing stresses on an element at 
point H having sides parallel to the x and 
y axes, (b) the principal planes and 
principal stresses at the point H.

SOLUTION:
Determine an equivalent force-couple 

system at the center of the transverse 
section passing through H.

Evaluate the normal and shearing stresses 
at H.

Determine the principal planes and 
calculate the principal stresses.

SOLUTION:
Determine an equivalent force-couple 

system at the center of the transverse 
section passing through H.

  
   inkip5.1in10lb150

inkip7.2in18lb150

lb150






xM

T

P

Evaluate the normal and shearing stresses 
at H.

  
 

  
 4

2
1

4
4
1

in6.0

in6.0inkip7.2

in6.0

in6.0inkip5.1













J

Tc

I

Mc

xy

y

ksi96.7ksi84.80 
xyyx



Fig. 1 Equivalent force-couple system
acting on transverse section containing
point H.

Fig. 2 General plane stress element (showing
positive directions).



Determine the principal planes and 
calculate the principal stresses.

 











119,0.612

8.1
84.80

96.722
2tan

p

yx

xy
p








 5.59,5.30p

 2
2

2
2

minmax,

96.7
2

84.80

2

84.80

22







 













 



 xy

yxyx 




ksi68.4

ksi52.13

min

max







Fig. 3 Stress element at point H.

Fig. 4 Stress element at point H
oriented in principal directions.

Mohr’s Circle for Plane Stress

For a known state of plane stress
plot the points X and Y and construct the 
circle centered at C. 
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With the physical significance of Mohr’s circle 
for plane stress established, it may be applied 
with simple geometric considerations.  Critical 
values are estimated graphically or calculated.

The principal stresses are obtained at A and B.
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The direction of rotation of Ox to Oa is 
the same as CX to CA.Fig. 7.12 (a) Plane stress element and the

orientation of principal planes. (b) corresponding Mohr‘s circle.



With Mohr’s circle uniquely defined, the state of 
stress at other axes orientations may be 
depicted.

Normal and shear stresses are obtained 
from the coordinates X’Y’.

For the state of stress at an angle  with respect 
to the xy axes, construct a new diameter X’Y’
at an angle 2 with respect to XY.

Fig. 7.13 (a) Stress element referenced to xy axes, 
transformed to obtain components  referenced to x’y’ axes. 
(b) Corresponding Mohr's circle.

Generation of Mohr’s Circle for Two-Dimensional Stress

A graphical technique permits the rapid transformation of stress from one plane to another and leads to the 
determination of the maximum normal and shear stresses. In this approach, trandformation equations are 
depicted by a stress circle, called Mohr’s circle. In the Mohr representation, the normal stresses obey the sign 
convention described before. However, for the purposes of constructing and reading values of stress from 
Mohr’s circle, the sign convention for shear stress is as follows: 

If the shearing stresses on opposite faces of an element would produce shearing forces that result in a 
clockwise couple, as shown below, these stresses are regarded as positive. Accordingly, the shearing stresses 
on the y faces of the element below are taken as positive (as before), but those on the x faces are now 
negative.



Given σx, σy, and τxy with algebraic signs in accordance with this sign convention, the procedure for 
obtaining Mohr’s circle is as follows:

Figure 1.15. (a) Stress element; (b) Mohr’s circle of stress; (c) interpretation of positive shearing stresses.

- Establish a rectangular coordinate system, indicating +τ and + σ. 
- Locate the center C of the circle on the horizontal axis at a distance ½ (σx + σy)  from the origin.
- Locate point A by coordinates σx and –τxy . We have placed A on +x face and B on +y face.
- Draw a circle with center at C and of radius equal to CA.
- Draw line AB through C.
- The angles on the circle are measured in the same direction as θ is measured in Fig. 1.15a. An angle 

of 2θ on the circle corresponds to an angle of θ on the element.

The state of stress associated with the original x and y planes corresponds to points A and B on the circle, 
respectively. Points lying on diameters other than AB, such as A′ and B′, define states of stress with respect to any 
other set of x′ and y′ planes rotated relative to the original set through an angle θ

Points A1 and B1 on the circle locate the principal stresses and provide their magnitudes as defined by equations, 
while points D and E represent the maximum shearing stresses. The radius of the circle is

Where

Thus, the radius equals the magnitude of the maximum shearing stress. Mohr’s circle shows that the planes of 
maximum shear are always located at 45° from planes of principal stress. 

The use of Mohr’s circle is illustrated in the next example.



Mohr’s Circle Example

At a point in the structural member, the stresses are represented as

Find by employing Mohr’s circle:
(a) the magnitude and orientation of the principal stresses
(b) the magnitude and orientation of the maximum shearing stresses and associated normal stresses.
(c) In each case, show the results on a properly oriented element; represent the stress tensor in 

matrix form.

The center of the circle is at (40 + 80)/2 = 60 MPa on the σ axis. Stress state at +x face or point A = 
(+80, -30) and stress state on +y face or point B = (+40, +30). Connect CA or radius or AB for diameter 
and draw the Mohr’s circle. 

σ1 = 60 + sqrt(302+(80-60)2)  = 60 + 36.05 = 96.05MPa
σ2 = 60 - sqrt(302+(80-60)2)  = 60  - 36.05 = 23.95MPa

Θp1= 56.31/2 = 28.15o

Θp2 = (180 + 56.31)/2 = 118.16o

Mohr’s circle clearly indicates that Θp1 locates the σ1 plane

The maximum shearing stresses are given by points D and E. 

As calculated in the previous page R = 36.05MPa
Therefore τmax = 36.05MPa 

2Θs1= 2Θp1 + 90 = 146.31  Θs1 = 73.15o

2Θs2 = 146.31 + 180 = 326.31  Θs1 = 163.15o

We may now describe the state of stress at the point in the following matrix forms:



Mohr’s Circle for Plane Stress
Mohr’s circle for centric axial loading:
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Fig. 7.17 (a) Member under centric axial load. (b) Mohr’s circle. (c) Element showing planes of maximum shearing stress.

Fig. 7.18 (a) Member under torsional load. (b) Mohr’s circle. (c) Element showing orientation of principal stresses.

Concept Application 7.2

For the state of plane stress 
considered in Concept Application 
7.1, (a) construct Mohr’s circle, (b) 
determine the principal stresses, (c) 
determine the maximum shearing 
stress and the corresponding normal 
stress.

Fig. 7.16  (a) Plane stress element. 
(b) Corresponding Mohr's circle. SOLUTION:

Construction of Mohr’s circle
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Fig. 7.16 (b) Mohr’s circle showing face X and Y.

Fig. 7.16 (c) Stress element orientations for 
principal and maximum shear orientations.

Maximum shear stress
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Fig. 7.16 (c) Stress element orientations for 
principal and maximum shear orientations.

Fig. 7.16 (d) Mohr’s circle used to determine 
principal and maximum shearing stresses.



Sample Problem 7.2

For the state of stress shown, 
determine (a) the principal 
planes and the principal stresses, 
and (b) the stress components 
exerted on the element obtained 
by rotating the given element 
counterclockwise through 30º.

SOLUTION:
Construct Mohr’s circle
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Fig. 1 Mohr’s circle for given stress state.
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Fig. 1 Mohr’s circle for given stress state. Fig. 2 Orientation of principal stress element.
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Stress components after rotation by 30o

Points X’ and Y’ on Mohr’s circle that 
correspond to stress components on the 
rotated element are obtained by rotating 
XY counterclockwise through

 602

MPa3.41

MPa6.111

MPa4.48












yx

y

x






Fig. 3 Mohr’s circle analysis for element rotation of 
30° counterclockwise.

Fig. 4 Stress components obtained by rotating 
original element 30° counterclockwise.

General State of Stress

State of stress at Q defined by: zxyzxyzyx  ,,,,,

Consider the general 3D state of stress at a point and 
the transformation of stress from element rotation

Consider tetrahedron with face perpendicular to the 
line QN with direction cosines: zyx  ,,
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can be found such that
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These are the principal axes and principal planes 
and the normal stresses are the principal stresses.

Fig. 7.19 Stress tetrahedron at point Q with 
three faces parallel to the coordinate planes.

Fig. 7.21 General stress element oriented to principal axes.



Stresses in Thin-Walled Pressure Vessels

Cylindrical vessel with principal stresses
1 = hoop stress
2 = longitudinal stress
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Fig. 7.40  Pressurized 
cylindrical vessel.

Fig. 7.41  Free-body diagram to determine hoop stress in a 
cylindrical pressure vessel.

Fig. 7.42  Free-body diagram to determine longitudinal stress.

Stresses in Thin-Walled Pressure Vessels

Maximum in-plane shearing stress:
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Maximum out-of-plane shearing stress 
corresponds to a 45o rotation of the plane 
stress element around a longitudinal axis
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Points A and B correspond to hoop stress, 1, 
and longitudinal stress, 2

Fig. 7.43  Mohr’s circle for element of 
cylindrical pressure vessel.



Spherical pressure vessel:
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Fig. 7.45  Free-
body diagram to 
determine 
spherical pressure 
vessel stress.

Fig. 7.46  Mohr’s circle for element of spherical pressure vessel.

Fig. 7.44  
Pressurized 
spherical vessel.

Transformation of Plane Strain
Plane strain - deformations of the material 

take place in parallel planes and are the 
same in each of those planes.

Example:  Consider a long bar subjected to 
uniformly distributed transverse loads.  
State of plane stress exists in any 
transverse section not located too close to 
the ends of the bar.

Plane strain occurs in a plate subjected along 
its edges to a uniformly distributed load and 
restrained from expanding or contracting 
laterally by smooth, rigid and fixed 
supports

 0

  :strain of components

x  zyzxzxyy 

Fig. 7.47  Plane strain example: laterally 
restrained by fixed supports.

Fig. 7.48  Plane strain example: bar of infinite length in z direction.



Transformation of Plane Strain
State of strain at the point Q results in 

different strain components with respect 
to the xy and x’y’ reference frames.
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Applying the trigonometric relations used 
for the transformation of stress,

Fig. 7.49  Plane strain element: undeformed and deformed.

Fig. 7.50  Transformation of plane strain element in 
undeformed and deformed orientations.

Mohr’s Circle for Plane Strain

The equations for the transformation of plane 
strain are of the same form as the equations 
for the transformation of plane stress -
Mohr’s circle techniques apply.

Abscissa for the center C and radius R ,
22

222 















 



 xyyxyx

ave R




  22
max 2 xyyxR  

Maximum in-plane shearing strain,

Principal axes of strain and principal strains,

RR aveave

yx

xy
p













minmax

2tan

Fig. 7.53  Mohr’s circle for plane strain.

Fig. 7.54a  Mohr’s circle for plane strain, showing principal 
strains and maximum in-plane shearing strain.



Measurements of Strain: Strain Rosette

Strain gages indicate normal strain through 
changes in resistance.

 yxOBxy   2

With a 45o rosette, x and y are measured 
directly.  xy is obtained indirectly with,
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Normal and shearing strains may be obtained 
from normal strains in any three directions,

Fig. 7.63  Electrical strain gage.

Fig. 7.64  Strain rosette that measures normal 
strains in direction of x, y, and bisector OB.

Fig. 7.65  Generalized strain gage rosette arrangement.

Example 1:

Determine the principal planes and principal stresses for the state of plane stress
resulting from the superposition of the two states of plane stress shown.

80 MPa

70 MPa
30 MPa 50 MPa

+

(i) (ii)



80 MPa

70 MPa
30 MPa

50 MPa

+

(i) (ii)

B A

A(50,0)B(-30,0)
••

A(50,0), B(-30,0)

Shear 0 Shear 0

Compression(-)
Tension(+)

• Center and radius of the circle are calculated

C(10,0)
•

A’(10,-40)

B’(10,40)

A’(10,-40), B’(10,40)

80 MPa

70 MPa
30 MPa

50 MPa

+

(i) (ii)

B A

• Element (ii) becomes after 45 rotation
A’(10,-40), B’(10,40)

B’

A’ 10 MPa

10 MPa

40 MPa Summing (i) 
and new (ii) 
we get

90 MPa

10 MPa

30 MPa

CCW(-) CW(+)



X(90,30), Y(10,-30)

Tension(+)
Tension(+)

90 MPa

10 MPa

30 MPa

Y
X

CW(+) CCW(-)

• Find principal stresses and planes
• Draw Mohr’s circle for new stress state X(90, 30)•

• Y(10,-30)

C(50,0)

• Principal stresses are calculated using center
and radius values R

• Find principal planes

90

• XY is the state after the superposition
• We rotate this state 18.4 degrees CW to get

the principal state

Principal state without shear

100 MPa

90 MPa

10 MPa

30 MPa

Y
X

X(90, 30)•

• Y(10,-30)

C(50,0)

R

90 X’Y’

X’

Y’



A

x
y

z

60 N
180 cm

30 cm
10 cm30 cm

Example 2
Determine
a) Max in-plane shear stress at A 
b) The principal stress at A

The effect of the load should be 
transferred to the plane where A stands
(Cross-section at the bottom)

4

30

30
15

10
5

4

30

30
15

10
5

4

30

30
10

10



A

88.89 kPa

88.89 kPa

-800 kPa-800 kPa

•

• X(-800,-88,89)

C(-400,0)
R

Y(0, 88.89)

400

88.89

•

Example 3

50mm 

150mm 

160mm 

100mm 

20mm 

40mm 

y

z

x

H

J

300 N 

50 N 

250 N 

120 N 

B

D

E

Determine normal and shearing stress at 
a) point H
b) point J

• A combined loading example.
• Move the 4 loads with their moments to

the plane that includes point H and J



50mm 

150mm 

160mm 

100mm 

20mm 

40mm 

y

z

x

H

J

300 N 

50 N 

250 N 

120 N 

B

D

E

The stresses are asked to be calculated on 
xyz axes. No rotation!

y

z x

y

z

H

J

20mm

40mm

b) point J

a) point H

(J is at the corner)




