ME211 Statics and Strength
of Materials

CHAPTER 5.5
FORCES IN BEAMS AND CABLES
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Application

Forces that are internal to the structural members beams
are the subject of this chapter

. |
Introduction

¢ Preceding chapters dealt with:
a) determining external forces acting on a structure and

b) determining forces which hold together the various members of a
structure. Lets call joint forces!

¢ The current chapter is concerned with determining the internal forces
(i.e., tension/compression, shear, and bending) which hold together the
various parts of a given member.

e Focus is on:

a) Beams - usually long, straight, prismatic members designed to
support loads applied at various points along the member.
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Internal Forces in Members

Straight two-force member AB is in
equilibrium under application of Fand
-F.

Internal forces equivalent to F and -F are
required for equilibrium of free-bodies AC
and CB.

Multiforce member ABCD is in equilibrium
under application of cable and member
contact forces.

Internal forces equivalent to a force-couple
system are necessary for equilibrium of free-
bodies JD and ABCJ.

An internal force-couple system is required
for equilibrium of two-force members which
are not straight.

Sample Problem 7.1

Determine the internal forces (a) in
member ACF at pointJand (b) in
member BCD at K.

SOLUTION:

Compute reactions and forces at
connections for each member.

Cut member ACF atJ. The internal forces at
J are represented by equivalent force-
couple system which is determined by
considering equilibrium of either part.

Cut member BCD at K. Determine force-
couple system equivalent to internal forces
at K by applying equilibrium conditions to
either part.




SOLUTION:

e Compute reactions and connection forces.

Consider entire frame as a free-body, and
apply equilibrium conditions:

ZME =0:

—~(2400 N)(3.6m)+ F(4.8m)=0 F =1800 N
2 F,=0:

—2400 N+1800 N+ E, =0 E, =600 N
Y F,=0: E.=0

GO0 N

Drawing the FBD for member BCD:

- Why are forces at B and C drawn in these
directions? Is there a choice on the directions?

- Why are there two force components at each
point instead of just a single force?

Drawing the FBD for member ABE:

- Why are forces at B in these directions? Is there
a choice on the directions?

- Why are there two force components at A
instead of just a single force?

1800 N

Finally, the FBD for member ACF.




Consider member BCD as free-body:

ZMBZOZ

— (2400 N)(3.6m)+C,(2.4m)=0 C, =3600 N
ZMCZOZ

— (2400 N)(1.2m)+ B, (2.4m)=0 B, =1200N
S>F,=0: -B,+C,=0

Consider member ABE as free-body:

SM,;=0: B.,(24m)=0 B, =0
>F,=0: B,-A4,=0 A4, =0
>F,=0: —A4A,+B,+600N=0 4, =1800N

From member BCD,
1800 N

SF,=0: -B,+C,=0 C,=0

GO0 N

1200 N 3600 N 2400 N

e Cut member ACF atJ. The internal forces atJ are
represented by equivalent force-couple system.

1800 N

Consider free-body AJ:

: ZMJ =0:
. ~(1800 NY1.2m)+ M =0
> F,.=0:
F — (1800 N)cos 41.7° =0
Y F,=0:

— ¥ +(1800 N)sin 41.7° = 0




1200 N 3600 N 2400 N

» Cut member BCD at K. Determine a force-couple
system equivalent to internal forces at K .

Consider free-body BK:
ZMK = 0 .
(1200 N)1.5m)+M =0 (M =-1800 N -m|

ZFx =0: F=0
2 F,=0:

Yy

- v ~1200N-V =0 7 =—1200 N
1200 N F =
T /4M o
A%

Various Types of Beam Loading and Support

e Beam - structural member designed to support loads
applied at various points along its length.

e Beam can be subjected to concentrated loads or
distributed loads or combination of both.

e Beam design is two-step process:

(b} Distributed load 1) determine shearing forces and bending moments
produced by applied loads

2) select cross-section best suited to resist shearing
forces and bending moments




Forces in Beams and Cables

Statically
Determinate
Beams

(@) Simply supported beam (b) Overhanging beam

Statically

Indeterminate ,&mw : %‘;M - |
Beams L_LI_QL_,LZ__,I . ! L_-L’__,l

(d) Continuous beam (e) Beam fixed at one end (f) Fixed beam
and simply supported
at the other end

j—

e Beams are classified according to way in which they are
supported.

e Reactions at beam supports are determinate if they
involve only three unknowns. Otherwise, they are
statically indeterminate.

Shear and Bending Moment in a Beam

Wish to determine bending moment and
shearing force at any point (for example,
point C) in a beam subjected to
concentrated and distributed loads.

e Determine reactions at supports by
treating whole beam as free-body.

e Cut beam at C and draw free-body
diagrams for AC and CB. By definition,
positive sense for internal force-couple
systems are as shown for each beam
section.

¢ From equilibrium considerations,
determine M and Vor M’ and V’.




Shear and Bending Moment Diagrams

¢ Variation of shear and bending
moment along beam may be
plotted.

e Determine reactions at supports.

e Cut beam at C and consider
member AC,

V=+P/2 M=+Px/2

2 o Cut beam at £ and consider
member EB,

V=-P/2 M=+P(L-x)/2

¢ For a beam subjected to
concentrated loads, shear is
constant between loading points
and moment varies linearly.

Sample Problem 7.2 SOLUTION.
* Taking entire beam as a free-body,
calculate reactions at B and D.

20 kN 40 kN ) ) )
* Find equivalent internal force-couple

systems for free-bodies formed by cutting
beam on either side of load application
points.

l-2-5m*|‘—3 m ——LZ m’l * Plot results.

Draw the shear and bending moment
diagrams for the beam and loading
shown.




SOLUTION:

e Taking entire beam as a free-body, calculate reactions
at Band D.

¢ Find equivalent internal force-couple systems at sections
on either side of load application points.

2F, =00 _20kN-1; =0 V, = -20kN

SM,=0: (20kN)Om)+M,;=0 |M;=0

Similarly,

V,=-20kN M,=-50kN -
Vy=26kN  M,;=-50kN -
Vy=26kN M, =+28kN -
Vi=-14kN M,=+28kN -
Ve=—14kN M, =0kN -m

m
m
m
m

* Plot results.

Note that shear is of constant value
between concentrated loads and
bending moment varies linearly.




Sample Problem 7.3

SOLUTION:

¢ Taking entire beam as free-body, calculate
reactions at A and B.

¢ Determine equivalent internal force-couple
systems at sections cut within segments AC,
CD, and DB.

¢ Plot results.

Draw the shear and bending moment
diagrams for the beam AB. The
distributed load of 40 Ib/in. extends over
12 in. of the beam, from A to C, and the
400 Ib load is applied at E.

SOLUTION:

¢ Taking entire beam as a free-body, calculate
reactions at A and B.

ZMA =0:
= 82 in: ! B,(32in.)- (480 Ib)(6in.)— (400 Ib)(22 in.) = 0
: 480 1b
B, =3651b
ZMB =0:

(480 1b)(26in.)+ (400 Ib )10 in.)— 4(32in.) = 0

> F,.=0: B, =0

¢ Note: The 400 Ib load at £ may be replaced by a 400
Ib force and 1600 lb-in. couple at D.




l——mn.—-— e 14 in.—] ¢ Evaluate equivalent internal force-couple systems at
A0 b/, 1600 Ibin. sections cut within segments AC, CD, and DB.

i 7 B
513 I 365 Ib FromAto C:
Y F,=0: 515-40x-V =0
V =515-40x
515 1b
S>M;=0: —515x—40x(%x)+M =0
M =515x—20x
From C to D:
ZFy:(); 515-480-V =0

515 1b

SMy=0: -515x+480(x-6)+M =0
M = (2880 +35x)1b -in.|

6 in.
l—lZin. o 14 in.—
0 1bdin. i i -
40 Ibfin — ¢ Evaluate equivalent internal force-couple systems
7 i B

at sections cut within segments AC, CD, and DB.

400 i | From D to B:
] "ﬂ_ﬁ—,' YF,=0: 515-480-400-V =0
1600 Ib-in. M V =_365 b
515 1b 400 bWy x - 18 |y ZMZ =0:
|
' 5 —~515x+480(x —6)—1600 +400(x —18)+ M =0

(M = (11,680 —=365x)Ib -in.|




6 in.
12 in,—s}—w} 14 in. |  Plot results.
40 Ib/in. | } ’

From A to C:
V =515-40x

M =515x—20x2

From C to D:
V =351b

(M = (2880 +35x)lb-in.|

|
3510 lb-in.

«— 5110 Ib-in. From D to B:
3300 Ib it V =-365 b

M = (11,680 —365x)1b -in.|

Relations Among Load, Shear, and Bending Moment

¢ Relations between load and shear:
V- +AV)-wAx =0
dav . AV
—=lim —=

= =-w
dx Ax—>0 Ax

Vy=Ve.=- J. wdx = —(area under load curve )

* Relations between shear and bending moment:
(M +AM )~ M —VAx + wa% =0
am AM

L tim 2% = tim (- Lwax)=¥
dx  Ax—0 Ax  Ax—0

Xp
Mp-Mc = IV dx = (area under shear curve )
Xc




Relations Among Load, Shear, and Bending

. wL
 Reactions at supports, R,=Rp = >

 Shear curve,
X
V-V, = —jwdx =—wx
0

L L
V=V4—wx =M= w(—xj
2 2
¢ Moment curve,

X
M —-M 4 = [Vidx
0

M ::{Cw(é—x)dx =%(Lx—x2)

2
My =2 (Matﬁ”‘j:r/:o)

Sample Problem 7.4 socrurion:

+ Taking entire beam as a free body, determine
reactions at supports.

20 kips 12 kips 1.5 kips/ft * Between concentrated load application points,

and shear is constant. dv / de=-w=0
B c
8 ft aLlO ft——l-— 8 ft

Draw the shear and bending- points is equal to area under shear curve between
moment diagrams for the beam points

and loading shown. dM /dx =V = constant

» With uniform loading between D and E, the
shear variation is linear.

6 ft
» Between concentrated load application points,

The change in moment between load application

» With a linear shear variation between D and E,
the bending moment diagram is a parabola.




r;.éu Kips SOLUTION:

¢ Taking enatire beam as a free-body,
determine reactions at supports.
D

- kat-—-—lOft“*Sﬂ—— >M,=0:
20 kips 12 kips L5 kips/ft

B

D(24 ft)— (20 kips )(6 ft)— (12 kips )(14 ft)

— (12 kips )28 ft)=0
2 F,=0:
A, —20 kips —12 kips + 26 kips —12 kips =0

i | A, =18 kips

V(kips)

id * Between concentrated loads, g1 Jdx = —w=0 and
Dl I A shear is constant and determined by appropriate
-16) section cut and solution.
= (=140} e With uniform loading between D and E, the shear
i variation is linear.
20kips 12 Hips 1.5 kips/ft ¢ Between cogcentrated load application po.ints?
JP Wﬂ Th.e ch.ange in moment between load application
A B8 T T £ points is equal to area under the shear curve
1~ B c DT between points.  dM /dx = V = constant .
18 kips 26 kips
Vﬂiplsg Mp-M,=+108 Mp=+108kip -ft
19l e Me-Mpg=-16 M =+92kip - ft
(-16) Mp-Mc=-140 Mp =-48kip - ft
=5 (~140) : Mgp-Mp=+48 My=0
-14
M(kip-ft)| +108
T, 92 e With a linear shear variation between D and E,
\ the bending moment diagram is a parabola.
“ .,
—48




Sample Problem 7.6

Sketch the shear and bending-
moment diagrams for the
cantilever beam and loading
shown.

SOLUTION:

¢ The change in shear between A and B is equal to

the negative of area under load curve between
points. The linear load curve results in a
parabolic shear curve.

With zero load, change in shear between B and C
is zero.

The change in moment between A and B is
equal to area under shear curve between
points. The parabolic shear curve results in a
cubic moment curve.

The change in moment between B and C is equal
to area under shear curve between points. The
constant shear curve results in a linear moment
curve.

wq

SOLUTION:

¢ The change in shear between A and B is equal to
negative of area under load curve between points. The
linear load curve results in a parabolic shear curve.

at4, V,=0, d—V:— =-wy
dx
VB—VA:—%WOa VB——%WOa
at B, d—V:—w=0
dx

e With zero load, change in shear between B and Cis
zero.




[— 3 woa?] [~ 2woa(L — a)]
N I 7 x
|
i ,
— 5 Wod - %woa

2
— = Woa
3 0

- éwoa(BL —a)

¢ The change in moment between A and B is equal to
area under shear curve between the points. The
parabolic shear curve results in a cubic moment
curve.

atd, M,=0, M _p_g

dx
Mg -M, =-Lwya? =—Lwga?
B~ My =—3wWa Mp =—-3wpa
MC—MB:—%woa(L—a) MC:—%woa@L—a

e The change in moment between B and C is equal to
area under shear curve between points. The constant
shear curve results in a linear moment curve.




