ME 211 Statics and
Strength of Materials

Chapter 8

Pure Bending

Pure Bending:
Prismatic members
subjected to equal
and opposite
couples acting in
the same
longitudinal plane

80 1b 80 1b

12 in. 26 in. 12 in.

Fig. 4.2 (a) Free-body diagram of
I the barbell pictured in the chapter
Rc=801b Rp = 80 Ib opening photo and (b) Free-body

(@) diagram of the center bar portion
showing pure bending.
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Other Loading Types

v-1501  Fig. 4.3 (a)
Free-body
diagram of a
clamp, (b) free-
body diagram of
the upper
portion of the

P clamp.

Fig. 4.4 (a)
‘ i Cantilevered
beam with end
(a) loading. (b) As
portion AC

P shows, beam is
not in pure
bending.

Eccentric Loading: Axial loading which
does not pass through section centroid
produces internal forces equivalent to an
axial force and a couple

Transverse Loading: Concentrated or
distributed transverse load produces
internal forces equivalent to a shear
force and a couple

Principle of Superposition: The normal
stress due to pure bending may be
combined with the normal stress due to
axial loading and shear stress due to
shear loading to find the complete state
of stress.

M
j Ly A \

Fig. 4.5 (a) A member in a state of pure
bending. (b) Any intermediate portion of AB will
also be in pure bending.
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o.dA

Fig. 4.6 Summation of the infinitesimal stress elements
must produce the equivalent pure-bending moment.

Symmetric Member in Pure Bending

M Internal forces in any cross section are equivalent
to a couple. The moment of the couple is the
section bending moment.

From statics, a couple M consists of two equal and
opposite forces.

The sum of the components of the forces in any
direction is zero.

The moment is the same about any axis
perpendicular to the plane of the couple and
zero about any axis contained in the plane.

These requirements may be applied to the sums of
the components and moments of the statically
indeterminate elementary internal forces.

Fy=Jo,dAd=0
M, =]zo,dA=0
M,=[-yo,dd=M




Bending Deformations

y

Beam with a plane of symmetry in pure
bending:

member remains symmetric

bends uniformly to form a circular arc

= cross-sectional plane passes through arc center and
() Longitudinal, vertical section remains planar

(plane of symmetry)
length of top decreases and length of bottom
increases

a neutral surface must exist that is parallel to the
upper and lower surfaces and for which the length
does not change

(b) Longitudinal, horizontal section

Fig. 4.9 Member subject to pure bending stresses and strains are negative (compressive) above
shown in two views. (a) Longitudinal, vertical

view (plane of symmetry) and (b) Longitudinal, the neutral plane and pOSitiVC (tension) below it
horizontal view.

Strain Due to Bending Consider a beam segment of length L.

After deformation, the length of the neutral
surface remains L. At other sections,

L'=(p- )
~g
§=L'-L=(p-y)0-pO=—y0
1) 1 . N
p- :/ y & = T y—a i (strain varies linearly)
’ p P
Neutral
axis e _c or p c P
l\/ Y \ . m —_ = —
AR = o G ‘ B =
L =L, |
(a) Longitudinal, vertical section (b) Transverse section c !.—I’"\\ |
(plane of symmetry) / |
T -
|
I\:?'_':\A‘.q‘ - -
Fig. 4.10 Kinematic definitions for pure bending. (a) o O
Longitudinal-vertical view and (b) Transverse section at origin. "“\\ . ‘
Lo

TZJpTdA: Tmax‘[pl dA:TmaxJ
c c




Stress Due to Bending

For a linearly elastic and
homogeneous material,

o, =FE¢, = —%Ea‘m

=2 o, (stressvaries linearly)
c

For static equilibrium,

Fo=0=[o,dd=[-2c, d4
(&
0=-"1yd4
C

First moment with respect to

the section centroid.

|
Yy

T

1
|

Neutral surface

Fig. 4.11 Bending stresses vary linearly
with distance from the neutral axis.

For static equilibrium,

M = [ ya, dt)=](- ] - Lo | s

M:%Iysz:O-m]
c c

y Me_M

L S

Substituti ng o, = ,Zo-m
c

neutral axis is zero. Therefore,
the neutral axis must pass through

A =24 in?

h=8in.

-

h =6in.

b =4in. L—’l
b =3in.
Fig. 4.12 Wood beam cross sections.
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(a) S-beam (b) W-beam

Fig. 4.13 Two type of steel beam cross
sections. (a) S-beam and (b) W-beam

Beam Section Properties

The maximum normal stress due to bending,
_Mc _M

o
"1 s
1 =section moment of inertia

I .
S =— =section modulus
c

A beam section with a larger section
modulus will have a lower maximum stress

Consider a rectangular beam cross section,
153

=Lppd =Lan

c h2 6 6
Between two beams with the same cross
sectional area, the beam with the larger depth
h will be more effective in resisting bending.

Structural steel beams are designed to have a
large section modulus.




Properties of American Standard Shapes

by 755
-y
Appendix C. Properties of Rolled-Steel Shapes ] ¥
(S! Units) d X X
S Shapes J_* =t
(American Standard Shapes)

o]

[ Flange
Web Axis X-X Axis Y-Y
Thick- | Thick-
Area Depth | Width ness ness I S, i 1, S, r

Designationt A,mm? d,mm | by,mm t,mm | f,mm | 10°mm* 10°mm® mm [10°mm* 10°mm® mm
S610 X 180 22900 622 204 217 20.3 1320 4240 240 (349 341 39.0
158 20100 622 200 27.7 157 1230 3950 247 32.5 321 39.9
149 19000 610 184 22.1 18.9 995 3260 229 20.2 215 323
134 17100 610 181 22.1 15.9 938 3080 234 19.0 206 33.0
119 15200 610 178 22.1 127 878 2880 240 17.9 198 34.0
S510 X 143 18200 516 183 234 20.3 700 2710 196 1 21.3 228 33.9
128 16400 516 179 234 16.8 658 2550 2005510197 216 344
112 14200 508 162 20.2 16.1 530 2090 193 [12.6 152 29.5
983 12500 508 159 20.2 12.8 495 1950 199 (118 145 30.4
S460 X 104 13300 457 159 17.6 18.1 385 1685 170 10.4 127 21.5
81.4 10400 457 152 17.6 117 833 1460 179 8.83 113 28.8
S380 X 74 9500 381 143 15.6 14.0 201 1060 145 6.65 90.8 26.1
64 8150 381 140 15.8 104 185 971 151 615 857 201

Deformations in a Transverse Cross Section

y Deformation due to bending moment M is quantified
¢ by the curvature of the neutral surface
o, 1 Mc
p ¢ Ec Ecl
M

1 ¢

EI

Although transverse cross sectional planes remain
// x planar when subjected to bending moments, in-
= plane deformations are nonzero,

!

I

1

!

]

1

!

I

[/

1

!

]

]

!

1
1L
i
I

- _w _ _v
=—VE, =— &, =—VE, ==

Neutral axis of !
N 1
transverse section \

€y

o= Expansion above the neutral surface and

contraction below it cause an in-plane curvature,

= anticlastic curvature

ISEIRS

1
pl

Fig. 4.16 Deformation of a transverse cross section.




Sample Problem 4.2

(b) the radius of curvature.

> A
’-— 90 mm —-I
i} J20mm Apply the elastic flexural formula to
L Elm find the maximum tensile and
compressive stresses.
l_‘—’l Mc
. 30 mm ' ) o‘m = T
A cast-iron machine part is acted upon by a 3
kN-m couple. Knowing £ =165 GPa and Calculate the curvature
neglecting the effects of fillets, determine (a) 1 M
the maximum tensile and compressive stresses, ; '

SOLUTION:

Based on the cross section geometry,
calculate the location of the section
centroid and moment of inertia.

y=Z g _y(iv4a?)

Sample Problem 4.2

’«— 90 mm —»‘

f ‘ . L ‘ iZO mm
i =50 mmT TC= .
40mm — |—e 7
LA L2
x
Yo = 20 mm ‘4—»‘
30 mm

Fig. 1 Composite areas for calculating

centroid.
12mm7} . ; ‘ 122 e
b —Te= x'
18 mm ﬁ—
2 |—e Y= 38 mm
2 !

Fig. 2 Composite sections for calculating
moment of inertia.

SOLUTION:

Based on the cross section geometry, calculate
the location of the section centroid and
moment of inertia.

Area,mm2 ¥y, mm )7A,mm3
1]20%90=1800 50 90x10°
2| 40x30=1200 20 24x10°

S A =3000 Y y4 =114x10°

= 3
poZiA_114x10° o
A4 3000
Lo=X(T+4d?)=3(Lor* + 4d?)
— (L90x20° +1800x122 }+ (L 30x 40° + 1200152
12 12

7=868x10°mm* =868x10"m*




. _________________________________________________________________|
Sam ple Problem 4.2 Apply the elastic flexural formula to find the

maximum tensile and compressive stresses.

Mc
=
Mc, 3kN-mx0.022m o, — +76.0 MPa
oy= = 52 4 —
1 868x10 " m
_ Mcpg  3kN-mx0.038m op =—1313MPa
“fea=002m BT T 868x10m®

cg = 0.038 m

Calculate the curvature

1_M
p EI

B 3kN-m 1
(165GPa)368x107m*)  |P
Yol

/ Center of curvature

Fig. 3 Deformed radius of curvature
is measured to the centroid of the
cross sections.

. |
Stress Concentrations

M v M .
28 i \\ D? ) 3.0 \ \ | ‘ T
I\ i -
26 \ \\ T w5 el M
A\ e
RN AN ]
29 2
22 \ 27 ‘ 29 1.2
K 2. 15 L1
. \ % 12 K 2.0 k 105
1.8 \ — 1.1 05 R
i Y =
1.6 ) e g gy,
| Lo P
14 ——
~]1.02 = 14
12 ~——t01 "
1.0 10
0 0.05 0.10 0.15 0.20 0.25 0.3 0 005 010 015 020 025 030
rld rid
Fig. 4.24 Stress-concentration factors for Fig. 4.25 Stress-concentration factors for
flat bars with fillets under pure bending. flat bars with grooves (notches) under pure
. bending.
Stress concentrations may occur:
in the vicinity of points where the
loads are applied Maximum stress:
in the vicinity of abrupt changes in O = K%

cross section




Eccentric Axial Loading in a Plane of Symmetry

p & E . .
. /’firc ;sj 3 Stress due tlo eccentn.c loading found by .
— T superposing the uniform stress due to a centric
(a)

load and linear stress distribution due to a pure
bending moment

Ox = (Gx )Centric + (Gx )bending

_P_ My
Fig. 4.39 (a) Member with eccentric loading. - ;_ I
(b) Free-body diagram of a member with

internal loads at section C.

Result are valid if stresses do not exceed the

Eccentric loading proportional limit, deformations have negligible

F=P effect on geometry, and stresses are not
M =Pd evaluated near points of load application.
y .l/‘ y

+ =, — c
— | AN

Fig. 4.41 Stress distribution for eccentric loading is obtained by superposing the axial and pure bending distributions.

SOLUTION:

Concept Application 4.7

A 160 1b

0.5 in.

0.65 in.

Fig. 4.43 Open
chain link under
loading.

|

V160 Ib
An open-link chain is obtained by bending low-
carbon steel rods into the shape shown. For 160
Ib load, determine (a) maximum tensile and
compressive stresses, (b) distance between
section centroid and neutral axis

Find the equivalent centric load and
bending moment

Superpose the uniform stress due to the
centric load and the linear stress due
to the bending moment.

Evaluate the maximum tensile and
compressive stresses at the inner
and outer edges, respectively, of the
superposed stress distribution.

Find the neutral axis by determining
the location where the normal stress
1S zero.
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Normal stress due to a
centric load

A=mc? = 7(0.25in)?

| 815 ps )
’ | I v =0.1963in>
AAAAAAAL K
| | | [ .
- W el — 00:§= 1601b2
0.1963in
\ / .8 9
=815psi
Yi601b
(c)
Fig. 4.43 Free-body diagram Normal stress due to
for section at C to find axial 8475 psi Ox .
force and moment. Stress at \\ bendmg moment
section C is superposed axial A
and bending stresses. JL 1= Zﬂc = 771'(0 25)
. . [}
Equivalent centric load and Y] v =3.068x10 3 in?

bending moment

Mc _(1041b-in)(0.25in)

P=1601b ~ = -
M = Pd = (1601b)0.65in) Ry "1 3.068x107in
=Pd= .65in )
. @ =8475psi
=1041b-in
1 ——_——————
L 8475 i Tk 9290 psi o,
N Sy
815 psi N )
T ) N na Fig. 4.43 (c) Axial stress at
il Jun A [ 13 section C. (d) Bending stress at
€ [ (‘!I y P I y C. (e) Superposition of stresses.
+ | = ‘5
™ —~7660 psi
8475 psi
© (d) (e)
Maximum tensile and compressive Neutral axis location
stresses Py,
o, =0p+0y, . VR,
-sisenars oo e P L ey 068x10 i
O =00=0p S 1051b-in
=815-8475 o, =—7660psi

o = 0.0240in




Sample Problem 4.8

\\7'; BL 10 Tmn 2\7/

’-— 90 mm 4-‘
A
L. J

20 mm

40 mm

Ce

1

v

'
y 10 mm

D
B

|

30 mm
Section a—a
Fig. 1 Section geometry to find centroid location.

From Sample Problem 4.2,
A=3x10"m?
Y =0.038m

1=868x10"" m*

The largest allowable stresses for the cast
iron link are 30 MPa in tension and 120
MPa in compression. Determine the largest
force P which can be applied to the link.

SOLUTION:
Determine equivalent centric load and
bending moment.

Superpose the stress due to a centric load
and the stress due to bending.

Evaluate the critical loads for the allowable
tensile and compressive stresses.

The largest allowable load is the smallest of
the two critical loads.

Sample Problem 4.8

A
S S—
I

cx=0022m
- ¥

|

) ,

e }

i cp = 0.038m
1

|

0.010 m

d

D
.

B

04

Fig. 2 Section dimensions for finding
location of point D.

op =
Ic

N 4
o=
s/ A

-/ (

Figs. 4 Stress distribution at section C is
superposition of axial and bending
distributions acting at centroid.

The largest allowable load

Determine equivalent centric and bending loads.
d =0.038-0.010=0.028m

P =centric load
M = Pd =0.028 P = bending moment

Superpose stresses due to centric and bending loads

P Mey P 3+(0.028P)(0.(;22):+377P
4 1 3x10” 868x10~
P Mcey P 3_(0.028P)(0.(;22):_1559P
4 1 3x10” 868x10~

i Evaluate critical loads for allowable stresses.
o4 =+377P=30MPa
op =-1559P =-120MPa

P=79.6kN
P=770kN




Unsymmetric Bending

Yy
///;

A 4 v & \\
R AN
H N \ y 3

1 QP

[s)

(b)

Fig. 4.44

Moment in plane ©

of symmetry. Fig. 4.45 Moment
not in plane of
symmetry.

Analysis of pure bending has been limited to
members subjected to bending couples
acting in a plane of symmetry.

Members remain symmetric and bend in the
plane of symmetry.

The neutral axis of the cross section coincides
with the axis of the couple.

Will now consider situations in which the
bending couples do not act in a plane of
symmetry.

Cannot assume that the member will bend in
the plane of the couples.

In general, the neutral axis of the section will
not coincide with the axis of the couple.

Unsymmetric Bending

Fig. 4.46 Section of arbitrary shape where the
neutral axis coincides with the axis of couple M.

axis of the couple as shown.

The resultant force and moment
from the distribution of

must satisfy

elementary forces in the section

0=F,=]o.dd= j(lam)dA
C
or 0=[ydA

neutral axis passes through centroid

M=M, :7“.){7%0‘,"}114

or M= oul
c

1 =1_= moment of inertia

Wish to determine the conditions under
which the neutral axis of a cross section
of arbitrary shape coincides with the

defines stress distribution

0=M, ='[zo;dA :IZ(_%O_'"jdA
or 0= _[yz dA =1, = product of inertia

couple vector must be directed along a
principal centroidal axis

F,=0=M, M,=M=applied couple




Superposition is applied to determine stresses in
the most general case of unsymmetric bending.

Resolve the couple vector into components along the
principle centroidal axes.

Fig. 4.49 Unsymmetric bending, with M, =M cosb My =Msind
bending moment not in a plane of symmetry. . . .
Superpose the component stress distributions

M M
3 M O-x:_izy_'.iyy

\ [z Iy

Along the neutral axis,

|
|
»

Fig. 4.51 M; acts in a plane that M M M cos6 Msiné
includes a principal centroidal axis, oy = 0= _HMy + b2 = _( )y + ( )y
bending the member in the vertical plane. 1, Iy 1, I

tang = Y- I—Ztane
z I,

Fig. 4.54 Neutral axis for *
unsymmetric bending.

Fig. 4.52 My acts in a plane that includes a principal
centroidal axis, bending the member in the horizontal plane.

Concept Application 4.8 SOLUTION:

Resolve the couple vector into

. components along the principle
1600 Ib - in. 30°/ centroidal axes and calculate the
17 corresponding maximum stresses.
Jies 35 M, =M cos6 M, =Msing
Combine the stresses from the
. component stress distributions.
M 2y My z
x= 5 +t—
1.51n. I z I ¥y

A 1600 1b-in couple is applied to a rectangular
wooden beam in a plane forming an angle of
30° with the vertical. Determine (a) the y
maximum stress in the beam, (b) the angle that z
the neutral axis forms with the horizontal

plane.




1600 1b

N

-in.

I

Resolve the couple vector into components and calculate the
corresponding maximum stresses.

M, =(16001b-in)cos30 = 13861b-in
M, =(16001b-in)sin30 = 8001b-in

I, =L (1.5in)3.5in) =5.359in*

I, =£(3.5in)1.5in)’ = 0.9844in*

The largest tensile stress due to M, occurs along AB

o = M.y _(13861b-in)(1.75in)
1: 5.359in*

The largest tensile stress due to M, occurs along 4D

_ M,z (8001b-in)0.75in) _

O =
I, 0.9844in*

=452.6psi

609.5 psi

The largest tensile stress due to the combined loading

occurs at A4.
Omax = 1062psi

Omax = O] +0p =452.6+609.5

1062

Determine the angle of the neutral axis.

.4
tang = I—Ztane = ﬂtan30

I, " 0.9844in*
=3.143

Fig. 4.55 Cross section with neutral axis
and stress distribution.




General Case of Eccentric Axial Loading
Consider a straight member subject to equal and

opposite eccentric forces.
The eccentric force is equivalent to the system of
a centric force (P) and two couples (M, and
P =centricforce
M, =Pa M_=Pb

(a)
By the principle of superposition, the
combined stress distribution is

M,).

_P_M.y Mz

c"‘ x\
o A | -
. AL,
z If the neutral axis lies on the section, it may be
®) found from
M, My P
LT

Fig. 4.56 Eccentric axial loading. (a) Axial force
applied away from section centroid. (b) Equivalent

force-couple system acting at centroid.

Example 1
Determine the maximum compressive stress

a) when both forces are applied
b) when only one force is applied
P p
&

=1




Example 1
2) Equivalent forces is I b) Equivalent force couple system at C is
2P P+P=2P I P |M| = Pr
Moments cancel (M = 0) M
I P Mc
o=——=——
I A I
c 2P 2P C
o1 =—— = —— P (PT')T'
1 2
A nr = <7
I A 4
4
| P 4P
I T omr?  mr?
‘[ | \I) M 5P
o, =———=
~ nr?
2P |
P
Example 2
Two vertical forces are applied to a beam
10 mm 10 mm . R
el of the cross section shown. Determine
— 110 kN 10 kN the maximum tensile and compressive
[ stresses in portion BC of the beam.
50 mm B C \
l AT g g b A[mm?] y[mm] Ay [mm?3]
T 10mm T ‘ ‘ “‘I 1 600 30 18000
‘ =0 ‘ | {=—250 mm ! | 600 30 18000
<— 50 mm —| 150 mm 150 mm
Fig. P4.11 300 5 1500
10 mm 10 mm o5 5 1500 37500
Sy = YyA 37500 _
U . U "~ r= YA ~ 1500 _
1
I, = I, = — (10mm)(60mm)3 + (600)(5)> I, = I, = 195mm*
50 mm 12 —
3 Parallel axis theorem
/ I, = = (30)(10)° + (300)(25 = 5)* I, = 122.5x10%mm*
% 10 mm 3712 3 ’
- - 3 4
‘Fsu mm »‘ ! I=l % lp¥ly = S125610°mm” | 1= suoustg-2p




Example 2

10mm  10mm
=
10 mm

‘«—50 nunA—j

50 mm

AJX -

Two vertical forces are applied to a beam of the
cross section shown. Determine the maximum
tensile and compressive stresses in portion BC
of the beam.

10 kN 10 kN
EY @

I

Fig. P4.11

10 mm 10 mm

i
150 mm

mm

|
150 mm

Moment about the load

Pya = (10)(0.15) = M

M = (10x103)(0.15)
Maximum distance

Iywp = 0.035m

| ¥por = —25mm = —0.025m

10 kN

I

v

Iy

Py

35 mm P, =10

‘—z— 50 mm J

T

My __ (1.5x10%)(0.035) _

= —102. SPa = —102.
Otop i ST 102.4x10%Pa = —102.4 MPa

(compression)
= 73.2x10°Pa = 73.2 MPa
(tension)

25 mm
10 mym
Mypo _  (1.5x10%)(-0.025)

Opot =~ 512.5x10~°

Example 3

The box beam is subjected to the internal moment of
M=4kN.m which is directed as shown. Determine

y the maximum bending stress developed in the beam

and the orientation of the neutral axis.

y component of M (-y)
z component of M (+z)

= —4sin45 = —2.828kNm
4cos45 = 2.828kNm

The moments of inertia of the cross section
x about the principal centroidal y and z axes:

I, = i(0 3)(0.15)3 — i(0 2)(0.1)3 = 67.7083x107° m*
AT A 2~ A '

1 1
I, = 35 (015)(0.3)* = 1 (0.1)(02)* = 0.2708x10~* m*




Example 3 Y

Bending stress:

G
_My

_/ 7
+y compression

g

—0y A B +ﬂ'y
—0z —0y

M, =
z \J
-y +ay,
+o, Py +o,

C ) D
v My

Maximum stress occurs at corners A and D

/ (-)

My
117 \

+z compression

Example 3 v
Y A B +G'y
-0, -0,
, Mia
)
=8y +(ry
+o, +0,
Ll
v My
M,y My
g=— +
17 I‘\I
z 2.828(10%)(0.15)  (—2.828)(10%)(0.075)
Omax = 04 = —

0.2708(1073)
04 = —4.70 MPa = 4.70 MPa (C)
_ 2.828(10%)(~0.15)

(—2.828)(10%)(—0.075)

67.7085(10-6)

Imax = 90 = T4 5708(10-3)
op = 470 MPa (T)

67.7085(10-6)




Examp|e 3 Orientation of Neutral Axis, here 8 = —45
— I, rang — 0.2708(107%) can(—45
=, T 67.7083(10-9) B(—45)
a =-—76.0° y
A B
z /
/’ /V
=602
c /‘ D
Example 4
10'mm 20x60 mm rectangular bar
- 10mm Two 10 kN forces are applied.
Determine the stress at point A when b=0

b=15mm
b=25mm

> b

lnk\'\t\

25 mm

A = (0.06m)(0.02m) = 1.2 x 10~3m?

I 1 1 1
§ =5 =z Ah=£bh? = =(0.02)(0.06)? = 12x 10-°m?




Example 4

M
5 10 kN
60 mm C P=20kN
25mm

10 kN

t=20 mm

NS
|
S

Oy =

M = 10kN x 25mm — 10kN x b
[M = 10kN (0.025m — b)]

|
Example 4

[M = 10kN (0.025m — b)|

Forb=(0 =) )N = 0.25kNm = 250Nm
_ 20kN 250Nm
4= 12x103m 12x10-6m3

loy = —4.17MPa]

= 16.667MPa — 20.833 MPa

Forb=15mm = M = 10kN (0.025 —0.015) = 100Nm

_ _ 20kN 100Nm 6 667MPa — 8333 MP
A= 12x103m 12x10-5m3 a-e @
o, = 8.33MPd]
Forb=25mm wmmp M =0
20kN

%A= 12x103m [0, = 16.667MPd]






