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Distributed Forces: Moments of Inertia
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Application

The deflection in structural 
members and the moment acting 
on an area behind a dam are 
examples of analyses requiring 
the moment of inertia.

Introduction
• Previously considered distributed forces which were proportional to the

area or volume over which they act.
- The resultant was obtained by summing or integrating over the

areas or volumes.
- The moment of the resultant about any axis was determined by

computing the first moments of the areas or volumes about that
axis.

• Will now consider forces which are proportional to the area or volume
over which they act but also vary linearly with distance from a given
axis.

- It will be shown that the magnitude of the resultant depends on the
first moment of the force distribution with respect to the axis.

- The point of application of the resultant depends on the second
moment of the distribution with respect to the axis.

• Current chapter will present methods for computing the moments of
inertia for areas and masses.



Moment of Inertia
of an Area

• Consider distributed forces whose magnitudes 
are proportional to the elemental areas on which 
they act and also vary linearly with the distance of 
from a given axis.
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• Example:  Consider the net hydrostatic force on a
submerged circular gate.

F  pA

The pressure, p, linearly increases with depth

p  y, so

F  yA, and the resultant force is

R  F
all A
   y dA , while the moment produced is

Mx   y 2dA
• The integral             is already familiar from our study of centroids.

• The integral               is one subject of this chapter, and is known as the area 
moment of inertia, or more precisely, the second moment of the area.

y dA

y 2 dA

M.O.I by Integration • Second moments or moments of inertia of
an area with respect to the x and y axes,

  dAxIdAyI yx
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• Evaluation of the integrals is simplified by
choosing dA to be a thin strip parallel to
one of the coordinate axes.

• For a rectangular area,
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• The formula for rectangular areas may also
be applied to strips parallel to the axes,
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Polar Moment of Inertia
• The polar moment of inertia is an important

parameter in problems involving torsion of
cylindrical shafts and rotations of slabs.

J0  r 2dA

• The polar moment of inertia is related to the
rectangular moments of inertia,
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Radius of Gyration of an Area
• Consider area A with moment of inertia

Ix.  Imagine that the area is
concentrated in a thin strip parallel to
the x axis with equivalent Ix.
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kx = radius of gyration with respect 
to the x axis

• Similarly,
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Sample Problem 9.1

Determine the moment of 
inertia of a triangle with respect 
to its base.

SOLUTION:

• A differential strip parallel to the x axis is chosen for
dA.

dIx  y 2dA dA  l dy

• For similar triangles,
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b
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• Integrating dIx from y = 0 to y = h,

Ix  y 2dA  y 2b
h  y
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Sample Problem 9.2

a) Determine the centroidal polar
moment of inertia of a circular
area by direct integration.

b) Using the result of part a,
determine the moment of inertia
of a circular area with respect to
a diameter of the area.

SOLUTION:

• An annular differential area element is chosen,

dJ O  u 2dA dA  2 u du

JO  dJ O  u 2 2 u du 
0
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  2 u 3du
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• From symmetry, Ix = Iy,

JO  Ix  Iy  2Ix

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Parallel Axis Theorem • Consider moment of inertia I of an area A
with respect to the axis AA’

 dAyI 2

• The axis BB’ passes through the area centroid
and is called a centroidal axis.
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Parallel Axis Theorem

• Moment of inertia IT of a circular area with
respect to a tangent to the circle,

IT  I  Ad 2  1
4

 r 4   r 2 r 2

 5
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• Moment of inertia of a triangle with respect to a
centroidal axis,

IA  A  I B  B  Ad 2

I B  B  IA  A  Ad 2  1
12
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Moments of Inertia of Composite Areas

• The moment of inertia of a composite area A about a given axis is obtained by adding the
moments of inertia of  the component areas A1, A2, A3, ... , with respect to the same axis.



Sample Problem 9.4

The strength of a W14x38 rolled steel 
beam is increased by attaching a plate 
to its upper flange.  

Determine the moment of inertia and 
radius of gyration with respect to an 
axis which is parallel to the plate and 
passes through the centroid of the 
section.

SOLUTION:

• Determine location of the centroid of
composite section with respect to a
coordinate system with origin at the
centroid of the beam section.

• Apply the parallel axis theorem to
determine moments of inertia of beam
section and plate with respect to
composite section centroidal axis.

• Calculate the radius of gyration from the
moment of inertia of the composite
section.

SOLUTION:

• Determine location of the centroid of composite section
with respect to a coordinate system with origin at the
centroid of the beam section.
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• Apply the parallel axis theorem to determine moments of
inertia of beam section and plate with respect to composite
section centroidal axis.

I  x ,beam section  I x  AY 2  385  11.20  2.792 2

 472.3 in4

I  x ,plate  I x  Ad 2  1
12

9  3
4 3

 6.75  7.425  2.792 2

145.2 in4

• Calculate the radius of gyration from the moment of inertia
of the composite section.
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I  x  I  x ,beam section  I  x ,plate  472.3 145.2
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Sample Problem 9.5

Determine the moment of inertia 
of the shaded area with respect to 
the x axis.

SOLUTION:

• Compute the moments of inertia of the
bounding rectangle and half-circle with
respect to the x axis.

• The moment of inertia of the shaded area
is obtained by subtracting the moment of
inertia of the half-circle from the moment
of inertia of the rectangle.



SOLUTION:
• Compute the moments of inertia of the bounding

rectangle and half-circle with respect to the x axis.

Rectangle:

Ix  1
3

bh3  1
3

240 120 138.2 106mm4

Half-circle: 
moment of inertia with respect to AA’,

IA  A  1
8

r 4  1
8

 90 4
 25.76 106mm4
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moment of inertia with respect to x’,

I  x  IA  A  Aa2  25.76 106 12.72 103 
 7.20 106mm4

moment of inertia with respect to x,

Ix  I  x  Ab2  7.20 106  12.72 103 81.8 2

 92.3106mm4

• The moment of inertia of the shaded area is obtained by
subtracting the moment of inertia of the half-circle from
the moment of inertia of the rectangle.

46 mm109.45 xI

xI  46mm102.138   46 mm103.92 




