ME 211 Statics and
Strength of Materials

Chapter 7

Introduction - Concept of Stress

|
Concept of Stress

The main objective of the study of the mechanics of
materials is to provide the future engineer with the
means of analyzing and designing various
machines and load bearing structures.

Both the analysis and design of a given structure
involve the determination of stresses and
deformations. This chapter is devoted to the
concept of stress.
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Review of Statics

l;@ ' force in each structural member
\

The structure is designed to
support a 30 kN load

The structure consists of a boom
AB and rod BC joined by pins
(zero moment connections) at
the junctions and supports

Perform a static analysis to
determine the reaction forces at
the supports and the internal

Fig. 1.1 Boom used to support a 30-kN load.

Structure Free-Body Diagram
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Fig. 1.2 Free-body diagram of boom showing
Applied load and reaction forces.

Structure is detached from supports and the
loads and reaction forces are indicated to
produce a free-body diagram

Conditions for static equilibrium:

+5 > M =0=4,0.6m)-(30kN)0.8m)
A, =+40kN

T, D F=0=4+C,
C,=—A, =-40kN

W XF=0=4,4C -30kN=0
A,+C, =+30kN

4, and C, cannot be determined from these

equations




Component Free-Body Diagram

In addition to the complete structure, each
component must satisfy the conditions for
static equilibrium

Consider a free-body diagram of the boom AB:
X Mp=0=-4,(0.8m)

A, =0
LA BB y=7 .
LO.S i —+] substitute into the structure equilibrium
! equation
30 kN C =+30kN
Fig. 1.3 Free-body diagram of member 4B freed from Re SultS:
structure. A=40kN—> C,=40kN« C,=30kNT

Reaction forces are directed along the
boom and rod

Method of Joints

Joints must satisfy the conditions for static
equilibrium which may be expressed in the
form of a force triangle:

¥ 30 kN S Fz=0
(@) (b) FAB _ FBC _ 30kN
Fig. 1.4 Free-body diagram of boom’s joint B and 4 - 5 - 3

associated force triangle.

Fup =40kN  Fpe =50kN

The boom and rod are 2-force members, i.e., the
members are subjected to only two forces
which are applied at the ends of the members

For equilibrium, the forces must be parallel to an
= axis between the force application points, equal

R A B Fly . . . K . .
Fig. 1.5 Free-body diagrams of two-force m magnltude’ and in OppOSIte directions

members AB and BC.




Stress Analysis
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Fig. 1.1 Boom used to support a 30-kN load.
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Fig. 1.7 Axial force represents the
resultant of distributed elementary forces.

Can the structure safely support the 30 kN load
if rod BC has a diameter of 20 mm?

From a statics analysis

F,3=40 kN (compression)
Fpe=50KkN (tension)

At any section through member BC, the
internal force is 50 kN with a force intensity
or stress of

P 50x10°N

ope="=—"" " _ =159 MPa
4 314x10°m?

From the material properties for steel, the
allowable stress is
Oal = 165 MPa

Conclusion: the strength of member BC is
adequate
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Fig. 1.1 Boom used to support a 30-kN load.

Design of new structures requires selection of

=20 For reasons based on cost, weight, availability, etc.,

An aluminum rod 26 mm or more in diameter is

appropriate materials and component dimensions
to meet performance requirements

the choice is made to construct the rod from
aluminum (o= 100 MPa). What is an
appropriate choice for the rod diameter?

PP 50x10°N

-6 2
Oull =— = = =500x10""m
Y oar  100x10°Pa
2
A:ﬁd—
4

—-6_2
d= A A00x10 TmT) ) o 1072m = 25.2mm
T T

adequate




Axial Loading: Normal Stress

y | v The resultant of the internal forces for an axially
loaded member is normal to a section cut
perpendicular to the member axis.

The force intensity on that section is defined as

, the normal stress.

Fig. 1.9 Small area AA, at an arbitrary cross AF P
section point carries/axial AF in this member. o= lim —/—

Cave = —
" N mM—0Ad 4

The normal stress at a particular point may not be
equal to the average stress but the resultant of the
stress distribution must satisfy

P=0c,,.4 =_[dF= _[adA
A

L. L ‘ \ The actual distribution of stresses is statically

{ @ © @ indeterminate, i.e., can not be found from statics
Fig. 1.10 Stress distributions at different
sections along axially loaded member. alone.

Centric & Eccentric Loading

A uniform distribution of stress in a section
infers that the line of action for the resultant of
the internal forces passes through the centroid
of the section.

; A uniform distribution of stress is only possible
Fig. 1.12 Centric loading having resultant forces ]fthe llne Of actlon Of the Concentrated loads
passing through the centroid of the section. ) .
L P and P’ passes through the centroid of the
section considered. This is referred to as

centric loading.

g I If a two-force member is eccentrically loaded,
i then the resultant of the stress distribution in a
N section must yield an axial force and a

moment.

The stress distributions in eccentrically loaded
Fig. 1.13 An example of simple eccentric loading. members cannot be uniform or SymmetriC.




Shearing Stress

P
Fig. 1.14 Opposing transverse loads creating
shear on member 4B.

Fig. 1.15 This shows the resulting internal shear

| force ona section between transverse forces,

Forces P and P’ are applied transversely to the
member AB.

|
‘ Corresponding internal forces act in the plane of

A B

|

section C and are called shearing forces.

The resultant of the internal shear force distribution
is defined as the shear of the section and is equal

to the load P.

The corresponding average shear stress is,

Tave =
: ﬂ Shear stress distribution varies from zero at the
@ member surfaces to maximum values that may be
£ J,I much larger than the average value.
' A .
The shear stress distribution cannot be assumed to be

uniform.

(b)

Single Shear
C

D
Fig. 1.16 Bolt subject to single shear.
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Fig. 1.17 (a) Diagram of bolt in single shear;

(b) section E-E "of the bolt
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Shearing Stress Examples

Double Shear
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(a) (b)
Fig. 1.19 (a) Diagram of bolt in double shear;
(b) section K-K’and L-L’ of the bolt.
P_F

T =—=
ave A 2A




Fig. 1.20 Equal and opposite forces between
plate and bolt, exerted over bearing surfaces.

Fig. 1.21 Dimensions for calculating bearing stress area.

1 ——————N——————.(=
Bearing Stress in Connections

Bolts, rivets, and pins create
stresses on the points of contact
or bearing surfaces of the
members they connect.

The resultant of the force
distribution on the surface is
equal and opposite to the force
exerted on the pin.

Corresponding average force
intensity is called the bearing
stress,
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Fig. 1.26 Axial forces on a two-force member. (a) Section
plane perpendicular to member away from load application.
(b) Equivalent force diagram models of resultant force acting
at centroid and uniform normal stress.
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Fig. 1.27 (a) Diagram of a bolt from a single shear joint with
a section plane normal to the bolt. (b) Equivalent force
diagram model of the resultant force acting at the section
centroid and the uniform average shear stress.

. |
Stress in Two Force Members

Axial forces on a two force member
result in only normal stresses on a
plane cut perpendicular to the
member axis.

Transverse forces on bolts and pins
result in only shear stresses on the
plane perpendicular to bolt or pin
axis.

Axial or transverse forces may produce
both normal and shear stresses with
respect to a plane other than one cut
perpendicular to the member axis.




(a)

T.

Stress on an Oblique Plane

Pass a section through the member forming an
angle 6 with the normal plane.

From equilibrium conditions, the distributed
forces (stresses) on the plane must be
equivalent to the force P

Resolve P into components normal and
tangential to the oblique section,
F =Pcost V = Psin@

The average normal and shear stresses on
the oblique plane are

F  Pcosé® P 2
o= = = —cos [
Fig. 1.28 Oblique section through a two-force member. (a) Section AH 0
plane made at an angle 0 to the member normal plane, (b) Free-body cosd
diagram of left section with internal resultant force P. (c) Free-body .
diagram of resultant force resolved into components F and V along the _ V _ Psin@ _ ﬁ :
! ”  1nto corl ' T= = =—sinfcosl
section plane’s normal and tangential directions, respectively. (d) Free- A AO
body diagram with equivalent as normal stress, o, and shearing stress, 0 cos®

Maximum Stresses

(b) Stresses for 0 = 0

j«r' = PI2A,

b T = PI2A,

(¢) Stresses for 0 = 45°
A T = P24,
\ o'=PRA,

(d) Stresses for = —45°

Fig. 1.29 Selected stress results for axial loading.

Normal and shearing stresses on an oblique
plane

P .
o=-—cos rzﬁsmﬁcosﬁ
AO Aﬂ

The maximum normal stress occurs when the
reference plane is perpendicular to the member
axis,

The maximum shear stress occurs for a plane at +
45° with respect to the axis,

’

P . P
T, =—sin45cos45=—=0
0




Stress Under General Loadings

\ A member subjected to a general
' combination of loads is cut into

two segments by a plane passing
through QO

The distribution of internal stress

components may be defined as,
X

oy = lim ——
Y adso M
AVY AVE
. y . z
Ty = lim ——~ 7, = lim
i AA—0 AA * AA—0 A4

For equilibrium, an equal and
) ® opposite internal force and stress

Fig. 1.31 (a) Resultant shear and normal forces, AV* and diStributiOl'l must be exerted on
AF*, acting on small area AA at point Q. (b) Forces on AA
resolved into force in coordinate directions. the OtheI' Segment Of the member‘

State Of Stress Stress components are defined for the planes
cut parallel to the x, y and z axes. For
equilibrium, equal and opposite stresses are
exerted on the hidden planes.

The combination of forces generated by the

stresses must satisfy the conditions for
) equilibrium:
Fig. 1.35 Positive resultant forces on a small elemen{ at point O ZFX = ZFy = ZFZ =0

resulting from a state of general stress.
ZMx=ZMy=ZMz=0

Consider the moments about the z axis:
>M,=0= (erAA)a —(ryxAA)a

Txy Tyx

similarly, 7,,=7,, and 7, =7,

Fig. 1.36 Free-body diagram of small element at O viewed on Ol’lly SIX components Of stress are requlred to
projected plane perpendicular to z’-axis. Resultant forces on define the complete state of stress
positive and negative z” faces (not shown) act through the z’-axis,

thus do not contribute to the moment about that axis.




. _________________________________________________________________|
Factor Of Safety Factor of safety considerations:

uncertainty in material properties

uncertainty of loadings

uncertainty of analyses

number of loading cycles

types of failure

maintenance requirements and
deterioration effects

FS = Factor of safety importance of member to integrity of

whole structure

Structural members or machines
must be designed such that the
working stresses are less than the
ultimate strength of the material.

Fs = Ou _ ultimate stress ) i
oan  allowablestress risk to life and property

influence on machine function






