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Distributed Forces:  Centroids and Centers of Gravity 
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Application

There are many examples in engineering analysis of distributed loads.  It 
is convenient in some cases to represent such loads as a concentrated 
force located at the centroid of the distributed load.

Introduction

• The earth exerts a gravitational force on each of the particles
forming a body – consider how your weight is distributed
throughout your body.  These forces can be replaced by a single
equivalent force equal to the weight of the body and applied at
the center of gravity for the body.

• The centroid of an area is analogous to the center of gravity of
a body; it is the “center of area.”  The concept of the first
moment of an area is used to locate the centroid.

• Determination of the area of a surface of revolution and the
volume of a body of revolution are accomplished with the
Theorems of Pappus-Guldinus.



Center of Gravity of a 2D Body

• Center of gravity of a plate
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• Center of gravity of a wire

Centroids and First Moments of Areas and Lines
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• Centroid of an area
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• Centroid of a line
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Determination of Centroids by Integration
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• Double integration to find the first moment

may be avoided by defining dA as a thin
rectangle or strip.

Sample Problem

Determine by direct integration the 
location of the centroid of a parabolic 
spandrel.

SOLUTION:

• Determine the constant k.

• Evaluate the total area.

• Using either vertical or horizontal strips,
perform a single integration to find the
first moments.

• Evaluate the centroid coordinates.



Sample Problem
SOLUTION:

• Determine the constant k.
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• Evaluate the total area.
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Sample Problem

• Using vertical strips, perform a single integration to
find the first moments.
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Sample Problem

• Or, using horizontal strips, perform a single
integration to find the first moments.  Try calculating
Qy or Qx by this method, and confirm that you get the
same value as before.
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Sample Problem

• Evaluate the centroid coordinates.
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Usually, the choice between using a vertical or horizontal strip is equally good, but in 
some cases, one choice is much better than the other.  For example, for the area 
shown below, is a vertical or horizontal strip a better choice, and why?

x

y

First Moments of Areas and Lines
• An area is symmetric with respect to an axis BB’ if

for every point P there exists a point P’ such that
PP’ is perpendicular to BB’ and is divided into two
equal parts by BB’.

• The first moment of an area with respect to a line
of symmetry is zero.

• If an area possesses a line of symmetry, its
centroid lies on that axis

• If an area possesses two lines of symmetry, its
centroid lies at their intersection.

• An area is symmetric with respect to a center O if
for every element dA at (x,y) there exists an area
dA’ of equal area at (-x,-y).

• The centroid of the area coincides with the
center of symmetry.



Centroids of Common Shapes of Areas

Centroids of Common Shapes of Lines



Composite Plates and Areas

• Composite plates
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Sample Problem

For the plane area shown, determine 
the first moments with respect to the x
and y axes and the location of the 
centroid.

SOLUTION:

• Divide the area into a triangle, rectangle, and
semicircle with a circular cutout.

• Compute the coordinates of the area centroid
by dividing the first moments by the total
area.

• Find the total area and first moments of the
triangle, rectangle, and semicircle.  Subtract
the area and first moment of the circular
cutout.

• Calculate the first moments of each area with
respect to the axes.



Sample Problem
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triangle, rectangle, and semicircle. Subtract the area
and first moment of the circular cutout.

Sample Problem
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• Compute the coordinates of the area centroid
by dividing the first moments by the total
area.



Theorems of Pappus-Guldinus

• Surface of revolution is generated by rotating a plane
curve about a fixed axis.

• Area of a surface of revolution is equal
to the length of the generating curve
times the distance traveled by the
centroid through the rotation.

LyA 2

Theorems of Pappus-Guldinus

• Body of revolution is generated by rotating a plane area
about a fixed axis.

• Volume of a body of revolution is equal
to the generating area  times the distance
traveled by the centroid through the
rotation.
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Sample Problem

The outside diameter of a pulley is 
0.8 m, and the cross section of its 
rim is as shown.  Knowing that the 
pulley is made of steel and that the 
density of steel is 
determine the mass and weight of 
the rim.

33 mkg 1085.7 

SOLUTION:

• Apply the theorem of Pappus-Guldinus to
evaluate the volumes of revolution of the
pulley, which we will form as a large
rectangle with an inner rectangular cutout.

• Multiply by density and acceleration to
get the mass and weight.

SOLUTION:

• Apply the theorem of Pappus-Guldinus to
evaluate the volumes or revolution for the
rectangular rim section and the inner
cutout section.

m  V  7.85 10 3 kg m3 7.65 10 6 mm 3 10 9 m3 /mm 3  kg 0.60m

W  mg  60.0 kg  9.81 m s 2  N 589W

• Multiply by density and acceleration to get
the mass and weight.



Distributed Loads on Beams

• A distributed load is represented by plotting the load
per unit length, w (N/m) .  The total load is equal to
the area under the load curve.
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• A distributed load can be replace by a concentrated
load with a magnitude equal to the area under the
load curve and a line of action passing through the
area centroid.

Sample Problem

A beam supports a distributed load as 
shown.  Determine the equivalent 
concentrated load and the reactions at the 
supports.

SOLUTION:

• The magnitude of the concentrated load is
equal to the total load or the area under the
curve.

• The line of action of the concentrated
load passes through the centroid of the
area under the curve.

• Determine the support reactions by (a)
drawing the free body diagram for the
beam and (b) applying the conditions of
equilibrium.



SOLUTION:

• The magnitude of the concentrated load is equal to the
total load or the area under the curve.

kN 0.18F

• The line of action of the concentrated load passes through
the centroid of the area under the curve.

kN 18

mkN 63 
X m5.3X

• Determine the support reactions by applying the
equilibrium conditions.  For example, successively
sum the moments at the two supports:

M A  0 : By 6 m  18  kN  3.5 m  0

kN 5.10yB

M B  0 :  Ay 6 m  18 kN  6 m  3.5 m  0

kN 5.7yA

Fx  0 : Bx  0

• And by summing forces in the x-direction:



Center of Gravity of a 3D Body: Centroid of a Volume

• Center of gravity G
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• For homogeneous bodies,

Centroids of Common 3D Shapes



Composite 3D Bodies

• Moment of the total weight concentrated at the center of
gravity G is equal to the sum of the moments of the
weights of the component parts.
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Sample Problem

Locate the center of gravity of the steel 
machine element.  The diameter of each 
hole is 1 in.

SOLUTION:

• Form the machine element from a
rectangular parallelepiped and a quarter
cylinder and then subtracting two 1-in.
diameter cylinders.



 X  x V V  3.08  in4  5.286  in3 

  Y  y V V  5.047  in 4  5.286  in3 

  Z  z V V  1.618  in 4  5.286  in3 

in. 577.0X

in. 577.0Y

in. 577.0Z




