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Distributed Forces: Centroids and Centers of Gravity
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Application

There are many examples in engineering analysis of distributed loads. It
is convenient in some cases to represent such loads as a concentrated
force located at the centroid of the distributed load.

. |
Introduction

¢ The earth exerts a gravitational force on each of the particles
forming a body — consider how your weight is distributed
throughout your body. These forces can be replaced by a single
equivalent force equal to the weight of the body and applied at
the center of gravity for the body.

¢ The centroid of an area is analogous to the center of gravity of
a body; it is the “center of area.” The concept of the first
moment of an area is used to locate the centroid.

¢ Determination of the area of a surface of revolution and the
volume of a body of revolution are accomplished with the
Theorems of Pappus-Guldinus.




Center of Gravity of a 2D Body

* Center of gravity of a plate * Center of gravity of a wire

M, IW=YxAW SF,; W =AW, + AW, + - + AW,

XM, YW =3 yAW

Centroids and First Moments of Areas and Lines

¢ Centroid of an area * Centroid of a line

XW = [xdw W =[xdw
x(ydt) = [ x(y1)d4 ¥(yLa)=[x(ya)dL
fA:deA:Qy )?L:deL

= first moment wit h respect to y yL = j ydL

)7A=_[ydA=Qx

. 7 >Weight per unit volume
= first moment wit h respect to x
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Determination of Centroids by Integration

XA = [xdd = [[xdxdy = [X,d4  * Double integration to find the first moment

B B may be avoided by defining dA as a thin
yA = [ydd = [[ydxdy = [, dA rectangle or strip.

P(x,y)

0“_@—'1 <

o o1
Do A = [X,dA
XA = [ X, dd x4 =[x, dA 2r (1 2 )
=|=—cosf|—r-do
:Ix(ydx) _ a+x[(a—x)dx] I3 2
A = [ 7o ? 74 =]
y J7A=,[J7eld‘4 2r . 1 >
=f5(ydx) [ ylla-x)r] :jssm@(zr dﬁj
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Sample Problem

y SOLUTION:
y=kx2

* Determine the constant k.
« Evaluate the total area.

+ Using either vertical or horizontal strips,
perform a single integration to find the
first moments.

Determine by direct integration the
location of the centroid of a parabolic
spandrel.

Evaluate the centroid coordinates.
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Sample Problem
y SOLUTION:
y=ka? « Determine the constant k.
y:kx2
b=ka®* = k="
| o a?
I
b a
Y y=7x2 or x:—l/2 /2
dA=ydx a b
o \)/ ¢ Evaluate the total area.
yef=':2_ A:IdA
T.‘I; a 374
- X
Xl =X J\ :jydxzf—zxzdx: %x—
a Oa a 3 0
_ab
3

Sample Problem

¢ Using vertical strips, perform a single integration to
find the first moments.

y
dA =ydx Q,=1%,d4 = xydx = Tx(izxzjdx
== y 0 a
ye:=t2_\_>/ a
< I :[Li} _a’h
Ea’:x I' * a2 4 0 4
a (b 2
Qx:.[.)_/eldA:J‘Zydxzif_(szj dx
2 02\a




Sample Problem

y
dA=(a—x)dy
)/ b
g
N
x
& §e1=y
_a+x
e X = 3 —_—
a

¢ Or, using horizontal strips, perform a single
integration to find the first moments. Try calculating
Q, or Q, by this method, and confirm that you get the
same value as before.

b 2_ 2
0, = | ¥ydd = [ X (a—x)dy = "y
0
et ) et
2% b 4
— a
0, =[y,dA=[y(a-x)y= Iy[a—myl/zj ly
b a 3/2] ab2
= —_—— d =
{)(ay PUEEE AT

Sample Problem

¢ Evaluate the centroid coordinates.

¥A=0,
_ab a’b _ 3
X—=—" X="a
3 4 4
X

yA:Qx

sab _ab? =3
Y370 "0
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Usually, the choice between using a vertical or horizontal strip is equally good, but in
some cases, one choice is much better than the other. For example, for the area
shown below, is a vertical or horizontal strip a better choice, and why?

First Moments of Areas and Lines

* An area is symmetric with respect to an axis BB’ if
for every point P there exists a point P’ such that
PP’ is perpendicular to BB’ and is divided into two
equal parts by BB’.

* The first moment of an area with respect to a line
of symmetry is zero.

» If an area possesses a line of symmetry, its
centroid lies on that axis

« If an area possesses two lines of symmetry, its
centroid lies at their intersection.

* An area is symmetric with respect to a center O if
for every element dA at (x,y) there exists an area
dA’ of equal area at (-x,-y).

¢ The centroid of the area coincides with the
center of symmetry.




Centroids of Common Shapes of Areas

Shape z 7 Area
h bh
Triangular area L o
Quarter-circular ar 4r ar?
area E3 a 3

. ar w2
Semicireular area 0 & x
Quarter-elliptical 40 ab ab
area Ed £ E
Semielliptical ab 2ab
4 0 3 2
Semiparabolic 3a 3h 20h
B 5 3

araholic area 3 4ah
Parabol 0 L 2
o 3a 3h ah
Parabolic spandrel 2 o h
nel nel ah

General spandrel 2ele 2eln e

Cireular sector Sesiter 0 ar?

Centroids of Common Shapes of Lines

Shape x v Length
Quarter-circular 4 2r 2r s
arc ™ 7 7 2
e ———f——
LA G
o t or
Semicircular are 3] 0 28 -
T
Arc of circle % o sar
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Composite Plates and Areas

» Composite plates
XYW=3xW
YYW =2yW

» Composite area
XY A=Y x4
YYA=3y4

Sample Problem SOLUTION:
* Divide the area into a triangle, rectangle, and
y semicircle with a circular cutout.

¢ Calculate the first moments of each area with
respect to the axes.

¢ Find the total area and first moments of the
triangle, rectangle, and semicircle. Subtract
the area and first moment of the circular
cutout.

80 mm |

60 mm
R

» Compute the coordinates of the area centroid
by dividing the first moments by the total
area.

For the plane area shown, determine
the first moments with respect to the x
and y axes and the location of the
centroid.




120 mm

Sample Problem

4

rp = 60 mm

60 mm

ro =40 mm

i
21l 9546 mm

T\
-

y

40 mm
80mm | > 80 mm
| i
60 mm @ e *
.
—20 mm
Component A, mm? X, mm y, mm XA, mm? VA, mm?®
Rectangle (120)(80) = 9.6 x 10° 60 40 +576 % 10° +384 x 10°
Triangle 3(120)(60) = 3.6 x 10° 40 —20 +144 x 10° —72 x 10°
Semicircle 17(60)% = 5.655 x 10° 60 105.46 +339.3 x 10° +596.4 x 10°
Circle —m(40)® = —5.027 x 10*> | 60 80 —301.6 x 10° —402.2 x 10°
SA = 13.828 x 10° S¥A = +757.7 X 103 | ZyA = +506.2 x 10°

¢ Find the total area and first moments of the
triangle, rectangle, and semicircle. Subtract the area
and first moment of the circular cutout.

0, = +506.2x10° mm?
0, =+757.7x10° mm?

Y = 36.6 mm

x

» Compute the coordinates of the area centroid
by dividing the first moments by the total
area.

oA _

Sample Problem

+757.7x10° mm?

> A

Fo2yd_

13.828 x 10> mm 2

X =54.8 mm

+506.2x10° mm?

>4

13.828 x10° mm 2

Y =36.6 mm




Theorems of Pappus-Guldinus

B , O
EQ_ 34_ L
A C A C

A C
Sphere Cone Taorus

* Surface of revolution is generated by rotating a plane
curve about a fixed axis.

dr
N\ 5 .
AN C * Area of a surface of revolution is equal

to the length of the generating curve

times the distance traveled by the

* centroid through the rotation.

A=2nyL

Theorems of Pappus-Guldinus

Sphere Cone Torus

* Body of revolution is generated by rotating a plane area
about a fixed axis.

* Volume of a body of revolution is equal
to the generating area times the distance
traveled by the centroid through the
rotation.

V=2nyA4




20 mm

Sample Problem

le——100 mm—-—l 20 mm SOLUTION:
i * Apply the theorem of Pappus-Guldinus to
S evaluate the volumes of revolution of the
¥ 400 mm pulley, which we will form as a large

20 mm

rectangle with an inner rectangular cutout.

» Multiply by density and acceleration to

get the mass and weight.

The outside diameter of a pulley is
0.8 m, and the cross section of its
rim is as shown. Knowing that the
pulley is made of steel and that the
density of steel is p=7.85><103 kﬁ m’
determine the mass and weight of

the rim.

SOLUTION:

cutout section.

the mass and weight.

» Apply the theorem of Pappus-Guldinus to
evaluate the volumes or revolution for the
rectangular rim section and the inner

* Multiply by density and acceleration to get

60 mm

—| 100 mm I«
50 mmjL =

—

375 mm 365

Distance Traveled
Volume, mm?®

Area, mm? | ¥, mm | by C, mm
1| +5000 375 2m(375) = 2356 (5000)(2356) = 11.78 x 108
I1 | —1800 365 2(365) = 2293 | (—1800)(2293) = —4.13 X 108

Volume of rim = 7.65 x 106

m=pV= (7.85 x 103kg/m3X7.65 x10"’mm3X10‘9m3 /mm3)

W =mg =(60.0 kg)(9.81 m/sz)




Distributed Loads on Beams

* A distributed load is represented by plotting the load
per unit length, w (N/m) . The total load is equal to

L
W =[wdx =[dAd=4
0 the area under the load curve.

(OPW = [ xdWw + A distributed load can be replace by a concentrated
I load with a magnitude equal to the area under the

(OP ) A = j xdA = XA load curve and a line of action passing through the
0 area centroid.

Sample Problem

SOLUTION:

W= SN N * The magnitude of the concentrated load is

equal to the total load or the area under the
curve.

* The line of action of the concentrated
load passes through the centroid of the
area under the curve.

* Determine the support reactions by (a)
A beam supports a distributed load as drawing the free body diagram for the
shown. Determine the equivalent beam and (b) applying the conditions of
concentrated load and the reactions at the  equilibrium.
supports.




w g = 4500 N/m

1.5 kN/m [L

SOLUTION:

» The magnitude of the concentrated load is equal to the
total load or the area under the curve.

* The line of action of the concentrated load passes through
the centroid of the area under the curve.

F =18.0kN

- O63kN-m =
x=SMm
18 kN
Component A, kN X, m XA, kN-m
Triangle I 45 2 9
Triangle II 13.5 4 54
2A = 18.0 XA = 63

wy = 1500 N/m

wpy = 4500 N/m

i

T) ZMB:O;

f

* And by summing forces in the x-direction:

>F =0:

-4, m)+(18 kN)(6 m-3.5 m)=0

B, =0

* Determine the support reactions by applying the
equilibrium conditions. For example, successively
sum the moments at the two supports:

>M,=0: By(6 m)—(18 kN)(3.5 m)=0

B, =10.5kN
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Center of Gravity of a 3D Body: Centroid of a Volume

y

AW

AW =_AWj

O, (¢)

W =—Wj
* Center of gravity G
—w ]* Y (_ AW ]*) * Results are independent of body orientation,

XW =[xdW YW =[ydW zW =[zdW

e X(_ WZ ) 22[’7 X(_AWZ )] * For homogeneous bodies,
FGWX(_j):(ZFAW)X(_j) W =yV and dW =ydV
w=[aw  FiGW =[FdWw XV =[xdv yV=[ydV zV=[zdV

Centroids of Common 3D Shapes

Al

L wah
Hemisphere 3

ol

B

Pyramid Sabh
Semiellipsoid
of revolution

|®

2 a2
5 mah

wl>

L 202
3 ma*h




Composite 3D Bodies

* Moment of the total weight concentrated at the center of
gravity G is equal to the sum of the moments of the
weights of the component parts.

XYSW=3xW YXW=33yW ZYW=37zW
* For homogeneous bodies,

XSV =V YSV=X3V ZSV=Yzr

1 v

Sample Problem SOLUTION:

* Form the machine element from a
rectangular parallelepiped and a quarter
cylinder and then subtracting two 1-in.

25in. diameter cylinders.

2 in.

Locate the center of gravity of the steel
machine element. The diameter of each
hole is 1 in.




4r_4(2)_
B e 0.8488 in.

Vv, in® X, in. y, in. Z,in. xV, in* yV, in* ZV, in*
1 (4.5)(2)(0.5) = 4.5 0.25 —1 2.25 1.125 —4.5 10.125
11 17m(2)%(0.5) = 1.571 1.3488 | —0.8488 | 0.25 2.119 —1.333 0.393
a1 | —=(0.5)%(0.5) = —0.3927 | 0.25 =d 3.5 —0.098 0.393 —1.374
IV | —m(0.5)%0.5) = —0.3927 | 0.25 -1 1.5 —0.098 0.393 —0.589
3V = 5.286 SxV =23.048 | SyV = —5.047 [ ZzV = 8555
V, in® X, in. v, in. Z,in. xV, in* yV, in* zV, in*
1 (4.5)(2)(0.5) = 4.5 0.25 1 2.95 1.125 —4.5 10.125
11 1(2)%(0.5) = 1.571 1.3488 —0.8488 | 0.25 2.119 —1.333 0.393
111 —(0.5)%(0.5) = —0.3927 | 0.25 =d 3.5 —0.098 0.393 —1.374
v —(0.5)%0.5) = —0.3927 | 0.25 -1 1.5 —0.098 0.393 —0.589
3V = 5.286 SIV =3.048 | ZyV = —5047 | XzV = 8.555

X =23V /2 =(3.08in")/(5.286 in")

Y =25V /27 =(-5.047 in")/(5.286 in®)

Z=2.2V /2 v =(1.618 in*)/(5.286 in)






