Programming the robot

In the previous chapter, we learned how to define surface target points. Now, it is time to learn

how to make our first program and ensure that the previously defined target points must be

traversed in a specific order. This task is considered as the continuity of the task accomplished in

previous chapter.

Paint Spray Operation

As the target points have been defined, instead of picking target points one by one, it is possible

to define a sequence of actions using targets. This whole operation can be split into three

sequences:

1. From Home position to Approach position.

Go through all surface points.

3. From the last target surface point to the Retract position and then back to the Home

position.

From Home to Approach position

Note

By default, the first
movement in the
program is defined as
a movement in joint
space and referred to
as Movel. The
movement space can
be easily switched
between Joint move
and Linear move by
the right-click menu
option of any
individual target
point.

Select both Home and Approach target points with the CTRL key and select ‘Create
Program’ from the right-click menu.

w B Home2Approach
o Set Ref.: Frame 2

o

& Set Tool: Paint gun

~ Movel (Home)
" Movel (Approach)

In addition to the target positions, a reference frame and a tool are also added
automatically. The program can be renamed as ‘Home2Approach’. Now, if you
select ‘Run’ option from the right-click menu of the program, you will be able to
see your robot in action and jumping between Home and Approach Targets.

Sequence through Surface points

A similar operation is repeated for all the surface points. All the points need to be selected first,
and then a program is created for these target points.

w B SurfacePaint
v Set Ref.: Frame 2
Set Tool: Paint gun
~ Movel (Surface 1)
- Movel (Surface 2)
-~ Movel {Surface 3)

-~ Movel (Surface 4)
- Movel (Surface 5)
- Movel (Surface 6)
- Movel (Surface 7)
- Movel (Surface 8)

The program has been renamed as ‘Surface Paint’ to identify its operation. As expected, the

reference frame and tool are automatically added. You can witness the sequence of operations by
running the program.

Return to the Home position

In the previous program, the robot is supposed to complete its operation at the last surface point
identified as ‘Surface 8’. From there, it must jump to the defined retract target point and return to
the home. For this purpose, select the retract and home target points and create a program.

w B Retract2Home
Set Ref.: Frame 2

- Set Tool: Paint gqun
* Movel (Retract)
" Movel (Home)

If the sequence of instructions is not according to your desire, it is very easy to hold and move up
and down the list to change the sequence.

Main Program

The individual programs are well defined and are working perfectly. But we are interested in
defining the whole operation, starting and ending at the home position. For the purpose, select all
three programs and select ‘Make Main Program’ from the right-click menu. A new main program
is created which calls three sub programs. This concept is like the main function and calling sub-
functions from the main function.

» B Home2Approach
» B SurfacePaint
» B Retract?Home

v . MainProgram
== Call Home2Approach
f_ Call SurfacePaint
~= Call Retract2ZHome

Now, it is possible to see the whole operation by just running the main program. If you like to
repeat these operations indefinitely, then enable ‘Loop’ options from the main program’s right-
click menu.

Introducing Macro

RoboDK improves visualization with the help of the scripts. These scripts can be written in Python
and are introduced as Macros to the existing workstation. These macros don’t interrupt the normal
sequencing of the program, rather run parallel to the actual program. For the paint sparying,
RoboDK has already provided a macro that can be accessed from Library — Macros — Spray on.
Double clicking the macro will help to turn it on or off. The results of the spraying are displayed
in the figure; the target points can be modified to perform fine tuning.

Surface 1 Surface 5 ,"'Surface 8

—Saiface4 \

\f
| \

Surface 2

! Surface 6 ' Sufface 7
Surfdtess

To make it more alive and respond to the situation, spray operation can be turned on/off through
instructions.

Program Call Instructions

To enable/disable the paint operation, it must be controlled by means of instructions. For this
purpose, RoboDK allows us to make additions to the existing program. Right click the
MainProgram to access Add Instruction — Program Call Instruction. A dialog box will pop up
through which spray operation can be enabled/disabled using flag 0/1 as an argument.

ﬁl Add Program call or Custom code x
Program Call e Select program
Sprayon(1}

0K Cancel

It 1s desired that the spray paint must be enabled when robot starts operating towards the first
surface paint and is disabled when operation is completed and it starts retraction.

MainProgram
Call Home2Approach
— —= Call SprayOn(1)

— %= (Call SurfacePaint

— = Call SprayOn(0)
— %= Call Retract2Home

— ¢ SprayOn

Generate a program from scratch

Programming your robot is possible in various ways with a lot of flexibility. Import into RoboDK

station a robot of your interest.

Either from the toolbar@ or from the program menu, select Add Program that will list the empty
program in the station tree as Progl. Same instructions related to the program can either be
accessed from the Program menu or by right clicking the program name and then proceeding to
the Add Instruction with further list of options.

Move Joint Instruction

Move instruction is used to command a robot's tool to access desired location. If it is the first
instruction in the program, then this action will add two entries under the program tree. First one
is the referencing, by default, it is referenced with respect to the base of the manipulator unless
modified.

v . Prog1

~ Set Ref: UR10 Base

~ Move] (Target 1)

Set Reference Frame

A new reference frame is introduced to the scene and placed roughly under the base reference
frame. Now by changing the referencing from Set Reference Link option available in the Set Ref
to the new frame just defined.

It is observed that the tool moves to a new position instead of Target 1 because a new base

referencing is defined.

Tool with respect to reference frame = Target position with respect to frame 2 + Frame 2 with

respect to base

"WT = Target + ,,s.Frame2
672.919 -9.119 663.800
—276.648 112.748 —163.900

_11080.600 n —224.200] _ | 856.400
—69.282 0.00 —69.282

69.282 0.00 69.282

—69.282 0.00 —69.282

Move Linear Instruction

To obtain linear movements between two target points, a linear instruction, MoveL, can be added
to the program. It just needs one target point to which a straight path is generated.

v a Prog1
— v Set Ref: UR10 Base
" Movel (T1)
.~ Movel (T3)

. Movel (T2)
.~ Movel (T4)

Move Circular Instruction

If the desire is to form an arc, then Move circular instruction is built for this purpose. From the
existing pose, the first target is linked by its option menu through which this arc will pass through.
The second linked target specifies where to end this arc. It is only possible to obtain an arc through
which a semi-circle can be made. To obtain a full circle, two circular instructions need to be

utilized.

v E Prog1
=~ Set Ref: UR10 Base

. MoveC (T3, T1)
: b MoveC .::T,.-_‘L zl

Set Tool Frame Instruction

If the manipulator is equipped with multiple tools, then in RoboDK, we have to specify the active
tool. Likewise, in the program, through the set tool link, any of the available tools can be picked.

Set Speed

It is also possible to set speed/acceleration in cartesian or joint space. It is even possible to set
different speeds in the same program to perform various actions.

B Set values >

Linear speed (mm/s)

set speed (mm,z) | 100,00 =
[] set acceleration {mm/s2 or %) 10000.00 =
Joint speed (deg/s)

[] set speed (deafs) 500.00 &
[] set acceleration {deg/=2) 200,00 =

With respect to the base, Target 1 and Target 2 are specified as (895.462, -163.900, 855.086, -
69.282, 69.282, -69.282) and (595.462, -163.900, 855.086, -69.282, 69.282, -69.282) respectively.
To perform a complete cycle, the length measured along the X-axis is 600mm. As the speed is
specified as 100 mm/s, it requires 6.0 s to execute the program.

Progl time: 6.0s

v . Prog1
—gx._ Set Ref: UR10 Base

|
5
@
0
=

‘ : Set Tool: RobotiQ 2F...
"* ’ Set speed (100.0 m...
.~ Movel (Target 1)

— .~ Movel (Target 2)

Pause Instruction E

It is also possible to introduce delay or pause between two instructions. The pause time is specified
in ms. After introducing pause, the whole execution time of the program increased to 6.5s.

v . Prog1
2. Set Ref: UR10 Base

o~
n

@
™
“

Set Tool: RobotiQ 2F...
Q Set speed (100.0 m...
~ «~ Movel (Target 1)

— 2 Pause 500 ms

h .~ Movel (Target 2)

Program Call Instruction =

Through program call instruction, it is possible to reuse one program or sub-program at multiple

instances.

4 BE
o Set Ref: UR10 Base
""" Movel (T1)
== call T2
| = == call Home
\d RE
| L~ Movel (12)
v . Home

-~ Movel (Home)

In the call instruction dialog box, two most useful options are either to select programs that already

exist in the station tree or it is also possible to write instructions manually.

@ Add Program call or Custom code X @ Add Program call or Custom code X

Program Call Select program Insert Code v Select program

Programl MoveL (Home)|

cac Coc

Simulation Event Instruction

In the simulation environment, it is possible to invoke some special actions which obviously will

not affect the actual code.

'ﬁ' Event Instruction -,
Action: The dosest object will be attached Select Tool (TCP):
Attach object R Q Object Inspection % Paint gun had

Measure distance as:
Default (station setting) £

Maximum distance (mm):

4 B

200.00

QK

Following set of actions are possible:

Attach or detach objects to robot tools

This sort of action is handy when we wish to simulate operations like pick and place. A gripper or
vacuum reaches a specific object, then that specific object is attached to the robot and upon

reaching the desired location, detach operation can be triggered.
Show or hide objects or tools

If a robot is equipped with multiple tools and you wish to show or hide certain tools depending
upon the requirement of the operation, then this option is handy.

Change the position of objects and reference frames

During the buildup, it is quite possible that objects and reference frames get disturbed from their
desired pose. To ensure that the robot is always working in a proper manner, it is best practice to
replace the frames at their original pose.

Simulate Program

To run the specific program, right-click the program name and select run. The execution of

instructions will be initiated one by one and the whole program will run for once.

If it is desired that the program should run indefinitely, then the Loop option must
be enabled.

Double click on the program menu and this will open the simulation bar at the
bottom of the screen. The simulation bar allows you to perform some control

By default, simulation actions, such as jumping to the start or end of the simulation. Play, pause and fast

has a curved

nich simulation options are also available. Counterclockwise circular arrow sets the
wihicC on

replaces program to repeat whereas toggling it runs the program only once.

itself with the circular

Generate Program

Probably, RoboDK’s strongest strength is its capability to generate programs for various types of
robots without having any concern about the type of language specific to that robot.

A simple program is generated that guides the UR10 robot to move between two targets.

Target 2

~~ Movel (Target 2)

" Movel (Target 1)

UR%O Base

S

With a right click on the program’s name, Generate Robot Program (F6) option can be clicked. By
default, it is stored to ../RoboDK/Programs directory with the file name same as the name of the

program.

This is what the generated program looks like. The program’s length and the script changes with
the type of robot. This program is saved as Progl.script

def Progl():
Global parameters:
global speed ms =0.250
global speed rads =0.750
global accel mss =1.200
global accel radss =1.200
global blend radius m = 0.001
global ref frame = p[0,0,0,0,0,0]

#

TO REMOVE HEADER:

Go to "Program" -> "Post-Processor Editor"
Select "Universal Robots"

Set "INCLUDE HEADER" to "False"

#

#

Add any default subprograms here

For example, to drive a gripper as a program call:
def Gripper Open():

#o..

end

#

Example to drive a spray gun:

def SprayOn(value):

use the value as an output:
DO SPRAY =5
if value == 0:
set standard digital out(DO_SPRAY, False)
else:
set standard digital out(DO_SPRAY, True)
end
end

Example to drive an extruder:
def Extruder(value):
use the value as an output:
if value <0:
stop extruder
else:
start extruder
end
end

Example to move an external axis
def MoveAxis(value):
use the value as an output:
DO AXIS 1=1
DI AXIS 1=1
if value <= 0:
set standard digital out(DO_ AXIS 1, False)

Wait for digital input to change state
#while (get _standard digital in(DI AXIS 1) != False):
sync()
#end
else:
set_standard digital out(DO_AXIS 1, True)

Wait for digital input to change state
#while (get standard_digital in(DI_AXIS 1) !=True):
sync()
#end
end
end

T

Main program:
Program generated by RoboDK v5.9.1 for UR10 on 22/07/2025 09:35:00
Using nominal kinematics.

ref frame = p[0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000]

movej([0.000000, -1.169432, -1.787968, -0.184190, 1.570796, -
0.000000],accel _radss,speed rads,0,0)
movel(pose trans(ref frame,p[0.663800, -0.163900, 0.856400, -1.209200,
1.209200, -1.209200]),accel_mss,speed ms,0,0.001)

End of main program

end

Progl()

If we change the robot to PUMAS560 with the new reachable target points, the program is generated
as Progl.cnc

; program: Progl()

Gle61

G90

F15000

; Program generated by RoboDK v5.9.1 for PUMA 560 on 22/07/2025 09:39:19

; Using nominal kinematics.

; Setting reference frame:

; PUMA 560 Base: X 0.000Y 0.000Z 0.000 A 0.000 B 0.000C 0.000

GO0 D 0.000000 E 0.000000 F 0.000000 G 0.000000 H 0.000000I -0.000000
GO0 D -8.564240E -23.697300F 76.837600 G 0.000000 H -53.1404001 8.564240
; ENDPROC

If you have a Main program with different subprograms, RoboDK generates a robot program for

each program separately.
Transfer of Program

Once the program is generated, an actual robot can be driven in two possible ways.
1. Manually transferring the codes to the robot controller

In this option, you must do the hard work of uploading the program from your PC to the robot
controller and run it later. This option can be laborious if you have to do it multiple times.

2. Automatically transferring the codes to the robot controller

First, you must configure your robot from the Connect menu. This communication is performed
using File Transfer Protocol (FTP). In the robot settings, the IP address must be configured along

with the port. After configuring, it is recommended to check the stability of the connection by
pinging the robot. In case of success, a connection is established which you can also verify through
Get Position command. In case of failure, a connection status is displayed as Failed.

After successfully configuring the robot, from the right-click menu of the program, a program can
be directly sent to the robot. After a successful transfer, a program can be run on a robot. You can

enable this option from the right-click menu of the program.

Selection of Post Processor

The post processor serves the purpose for the generation of a program that is specific to the robot.
It automatically determines the post processor suitable for the robot. In case you wish to define the
post processor on your own, you can either do it from the main Program menu from the toolbar or

from the right-click options of the program.

Program Settings

If you wish to change the default Program generation settings, you can always override the existing
settings from Tool — Options — Program. It is quite enriched and does contain very useful
options. It is not possible to go through every option, just a few are discussed.

1. It is possible to limit the length of the program, then a larger program exceeding a certain
number of lines will be split to multiple programs.
Default target type can be changed from Cartesian to Joint.

3. Minimum, maximum step sizes can be defined for joint and linear movements.
Minimum and maximum arc sizes can also be defined for circular movements with the
option to avoid arcs.

5. A default Text Editor of your likings can also be defined for displaying the programs.

6. If you do not wish to have separate files for the sub-programs, inline subprogram option
can be used to make them a part of the main program.

@ Options

General Display Motion CAD CAM Program

[] update program paths when the station is loaded
[] Hide program path by default {faster)
[] Hide instructions nodes by default (faster)

[] Maximum number of lines per program 5000

Indude subprograms

Qutput for joint movements | Default (target) A
Qutput for linear movements | Default (target) w
Qutput for dreular movements | Default (target) w

Robot programs folder: C:/Users fumer. khan/OneDrive - Athm UniversitesiDocuments /RoboDKPrograms
Show programs in Text Editor: C:/RoboDE/Qther VSCodium/VSCodium. exe

[] open programs as embedded windows

[] skip program calls that don't exist in the station
[skip speed changes in programs

Include available subprograms
[] wnline subprograms. Depth: 23

|:| Export target names
Automatically set reference and tool frames for new movements

When a reference frame is updated by a program

Set default settings | | Customize shortouts) Help

Only programs with the same robot

4k

Python Drrivers Accuracy Other Station

Use Tool numbers for numbered Tools
Use Frame numbers for numbered Frames
[] pisplay program trace step by step

= Show program generation log Show on "Save As...”

w |Default target type

Maximum step size (deg)
Minimum step size (mm)

-1.00
-1.00

270,00
-1.000

Cartesian target

Coarse

Maximum step size {mm)

LI NS

Maximum step size (deqg)

Minimum arc size {mm) Avoid arcs

Maximum arc size {deg)

LIS

Maximum arc size {mm)

ol
Select...
[] recaloulate Targets before generation
[] Filter setting reference and tool frames
Impose original tool and reference in programs
[] Hide Program generation progress bar
|:| Import targets with wrong configurations
|:| Export external axes poses

Auto
never modify the station

Default

Default

Set

Set

oK

