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Robot Manipulator Control

D(q)§+H(q,9)+C(q)=7

* Robot System:

Y =h(q)
_ €=4q,—49 t
e |Oi : q,q, ee or
Joint Level Controller Trajectory | 94 Controller Robot
Planner q, T
Find a control input (tor), g >¢q, as {—>x
« Task Level Controller
e=Y,-Y
Task level ¥, ¥, €€ tor ' Robot 99 Forward YY
Planner $T‘ Controller — Dynamics | | Kinematics g
Find a control input (tor), Y —>Y, as t—>owo e=Y,-Y—>0



Robot Manipulator Control

Control Methods

Conventional Joint PID Control
* Widely used in industry

*Advanced Control Approaches

* Computed torque approach
* Nonlinear feedback

* Adaptive control

* VVariable structure control



Control Theory Review (I)
PID controller: Proportional / Integral / Derivative control

C— Vg — VY,

— de
V=K ,-e + K [edt + K, n
Error signal e

\Va

Closed Loop Feedback Control

v

deS|red compute V using \V4 actual y,
@ —| PID feedback Motor >

actual y,

Reference book: Modern Control Engineering, Katsuhiko Ogata, ISBNO-13-060907-2
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Evaluating the response
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Isteady-state error

ss error -- difference from the
system’s desired value

overshoot -- % of final value
exceeded at first oscillation

rise time -- time to span from
10% to 90% of the final value

settling time -- time to reach
within 2% of the final value

How can we eliminate

the steady-state
error?



Control Performance, P-type

Proportional Control: Kp =50
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Control Performance, Pl - type

K, =100
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You've been integrated...

FID Contral with Kp=100 Ki=500 kKd=0 FID Contral with Kp=100 Ki=1300 kKd=0
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PID Caontral with Kp=100 Ki=200 Kd=2
Frowm: UCT)
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Control Performance, PID-type
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¥ |Figure Mo_ 3

PID final control
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Control Theory Review ()

* Linear Control System
 State space equation of a system

x = Ax+ Bu

e Example: a system:

X, =X, — x| [0 1 x1+0
X, =u w110 ofx | 1]

* Eigenvalue of 4 are the root of characteristic equation

Al—4=0 <= A= ;lzfzo

0
* Asymptotically stable all eigenvalues of A4 have negative real part




Control Theory Review ()

* Find a state feedback control u=—K-x
* such that the closed loop system is asymptotically stable
_XI _
U= —[k1 kz]
X5
| 2 A L
* Closed loop system becomes y .
x=(A-BK)x e B X
-K =

* Chose K, such that all eigenvalues of A’=(A-BK) have negative
real parts

Al—A' =X +k,A+k =0

ko A+k,



Control Theory Review (lIl)

* Feedback linearization
* Nonlinear system Y= F(xX)+G(x)U

U=[-G ' (x)f(x)+G (x)V']

........................................................................................................

. Exa)m(pfe: Linear System

o  Nonlinear Y Dynamic | X
Original system: | Feedback " System | |
X+cosx=U -t

Nonlinear feedback:

U=cosx+V Linear system: x=V



Robot Motion Control (I)

* Joint level PID control
e each joint is a servo-mechanism
* adopted widely in industrial robot

* neglect dynamic behavior of whole arm

* degraded control performance especially in high speed

* performance depends on configuration

Trajectory
Planner

. €=4,—9
4.9, €¢€ tor
7 » 1+ Controller —»
d

!

Robot




Robot Motion Control (I1)

* Computed torque method

* Robot system: {D(Q)é +H(q,q)+C(q) =1
Y =h(q)
* Controller:

tor =D(q)[§" +k,(§' =) +k,(q" —9)]+H(g,9)+C(q)

G ~§) +k, @~ +k,(g" —q)=0 ’

EROIHREY  cvkovke=0

Advantage: compensated for the dynamic effects

Condition: robot dynamic model 1s known



Robot Motion Control (I1)

_'e'+kve‘+kpe=0--'—

Define states: ' — =
efine states: ,
X, =é X, =—k,x, =k x
' 1
In matrix form: | 1 |— 0 Ml AX
xz _kp _kv xz
. . -1 )
Characteristic equation: ‘ Al — A‘ = 1" +kA+k =0
k, A+k, T
—k, .k~ 4k,
The eigenvalue of A matrix is: 4, =
2 k >0
One of a v

Condition: A have negative real part ,
S P selections: kp > ()



Robot Motion Control (1)

* Non-linear Feedback Control

=Y, -Y Linear System

Tasklevel ¥, . ¢ Linear Y Nonlinear © Robot 4 Forward Y.

9 . —» ) i . Nt
Planner 'y, 4 e Controller ||  Feedback Dynamics | |4 Kinematics |y

.............................................................................................................................

Robot System: {D(Q)q + H(Qa Q) + C(Q) =7
Y =h(g)

Jocobian: Y—d—q[h(q)]°q—Jq D Y=Jj+Jj == G=J"(Y-Jg)

D(q)J (Y =J§)+ H(q,9)+C(g) =7



Robot Motion Control (1)

* Non-linear Feedback Control

Linear System

e=Y,-Y

Task level Y4 e Linear iLiNonIinear tor  Robot | 4 Forward
Planner vy, { e Controller§ Feedback Dynamics | |4 Kinematics

.............................................................................................................................

Design the nonlinear feedback controller as:
tor = D(q)J (U = J§) + H(q,9) +C(q)
Then the linearized dynamic model:
D(q)J 'Y =D(¢q)J'U ==> Y=U
Design the lincar controller: U =Y, +k, (Y, =Y)+k, (¥, —Y)

Error dynamic equation: e+ke+k,e=0



Thank youl!
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