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Materials used

• Chapter 4, Introduction to Robotics, Saeed B. Niku
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EFFECTIVE MOMENTS OF INERTIA

 To Simplify the equation of motion, Equations can be rewritten in
symbolic form.  
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gravityInertia



DYNAMIC EQUATIONS FOR MULTIPLE-
DEGREE-OF-FREEDOM ROBOTS

 Equations for a multiple-degree-of-freedom robot are very long and 
complicated, but can be found by calculating the kinetic and potential   
energies of the links and the joints, by defining the Lagrangian and by   
differentiating the Lagrangian equation with respect to the joint variables.

Kinetic Energy

 The kinetic energy of a rigid body 
with motion in three dimension : 
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 The kinetic energy of a rigid body 
in planar motion
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Fig. 4.7 A rigid body in three-dimensional motion and 
in plane motion. 



Velocity of a link
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A point fixed in link i and expressed w.r.t. the i-th frame

Same point w.r.t the base frame



Velocity of a link
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Velocity of a link
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Velocity of a link
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Velocity of a Link
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Velocity of a link
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 The velocity of a point along a robot’s link can be defined by differentiating  
the position equation of the point. 
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Kinetic energy of link i
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Kinetic energy of link i
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Manipulator Dynamics
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Manipulator Dynamics
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Manipulator Dynamics

• Lagrangian function
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DYNAMIC EQUATIONS FOR MULTIPLE-
DEGREE-OF-FREEDOM ROBOTS

Robot’s Equations of Motion

 The Lagrangian is differentiated to form the dynamic equations of motion.

 The final equations of motion for a general multi-axis robot is below. 
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Example 4.7

Fig. 4.8 The two-degree-of-freedom robot arm of Example 4.4 

Solution

Using the aforementioned equations, derive the equations of motion for the two-
degree of freedom robot arm. The two links are assumed to be of equal length.

Follow the same steps as before…….

 Write the A matrices for the two links;  

 Develop the      ,        and        for the robot. ijD ijkD iD

 The final equations of motion without the actuator inertia terms are the same as below. 
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Manipulator Dynamics
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Manipulator Dynamics
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Example
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Example: One joint arm with point mass (m) 

concentrated at the end of the arm, link 

length is l , find the dynamic model of the 

robot using L-E method.  

Set up coordinate frame as in the figure
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Example
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Example
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Example
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Example: Puma 560

• Derive dynamic equations for the first 4 links of 

PUMA 560 robot



Example: Puma 560

Joint i i  i  ai(mm) di(mm) 

1 1 -90 0 0 

2 2 0 431.8 -149.09 

3 3 90 -20.32 0 

4 4 -90 0 433.07 

5 5 90 0 0 

6 6 0 0 56.25 
 

 

• Get robot link parameters

• Set up D-H Coordinate frame

• Get transformation matrices i

iT 1

• Get D, H, C terms 



Example: Puma 560
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Example: Puma 560
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STATIC FORCE ANALYSIS OF ROBOTS

 Position Control:   The robot follows a prescribed path without any reactive force.   

 Robot Control means Position Control and Force Control.

 Force Control:  The robot encounters with unknown surfaces and manages to 
handle the task by adjusting the uniform depth while getting the reactive force. 

Ex) Tapping a Hole - move the joints and rotate them at particular rates to  
create the desired forces and moments at the hand frame.   

Ex) Peg Insertion – avoid the jamming while guiding the peg into the hole and  

inserting it to the desired depth. 



STATIC FORCE ANALYSIS OF ROBOTS

 To Relate the joint forces and torques to forces and moments generated at the
hand frame of the robot.

T
H H H H H H H

x y z x y zF f f f m m m      

x y z x y z x z
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 

 
 
 
 

        
 
 
 

     FJT HTH

        DTDFW
THTH 

 f is the force and m is the moment 
along the axes of the hand frame. 

 The total virtual work at the joints  
must be the same as the total work 
at the hand frame. 

 Referring to Appendix A



TRANSFORMATION OF FORCES AND
MOMENTS BETWEEN COORDINATE
FRAMES

An equivalent force and moment with respect to the other coordinate frame 
by the principle of virtual work. 
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 The total virtual work performed on the object in either frame must be the same. 



TRANSFORMATION OF FORCES AND 
MOMENTS BETWEEN COORDINATE 
FRAMES

 Displacements relative to the two frames are related to each other by the 
following relationship.

    DJD BB 

 The forces and moments with respect to frame B is can be calculated directly 
from the following equations: 

fnf x
B 

fof y
B 

fof y
B 

  ][ mpfnmx
B 

  ][ mpfomy
B 

  ][ mpfamz
B 



Thank you!
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