INDUSTRIAL AUTOMATION & ROBOTICS TECHNOLOGY

Fundamentals + Transformation

M Umer khan

Department of Mechatronics Engineering

ATILIM University

UMER.KHAN@ATILIM.EDU.TR

Materials used

- Chapter 2, Introduction to Robotics, John J. Craig
- Chapter 2, Introduction to Robotics, Saeed B. Niku

Position and Orientation

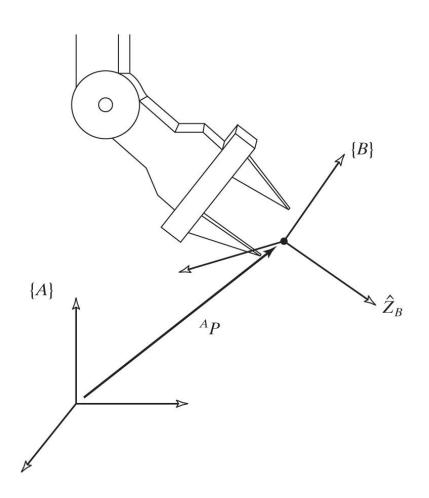
$$\hat{Z}_{A} = \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix}$$

$$\hat{Y}_{A}$$

$$\hat{Y}_{A}$$

Position and Orientation

- Coordinate system {B}
- Coordinate system {A}



Robot Kinematics

Forward Kinematics:

to determine where the robot's hand is?

(If all joint variables are known)

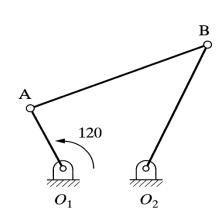
Inverse Kinematics:

to calculate what each joint variable is?

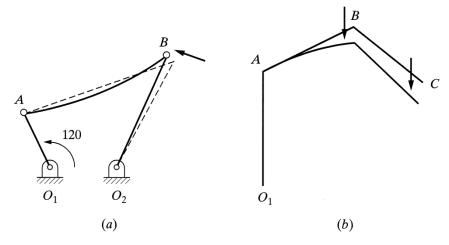
(If we desire that the hand be located at a particular point)

Robots as Mechanisms

Multiple type robot have multiple DOF. (3 Dimensional, open loop, chain mechanisms)

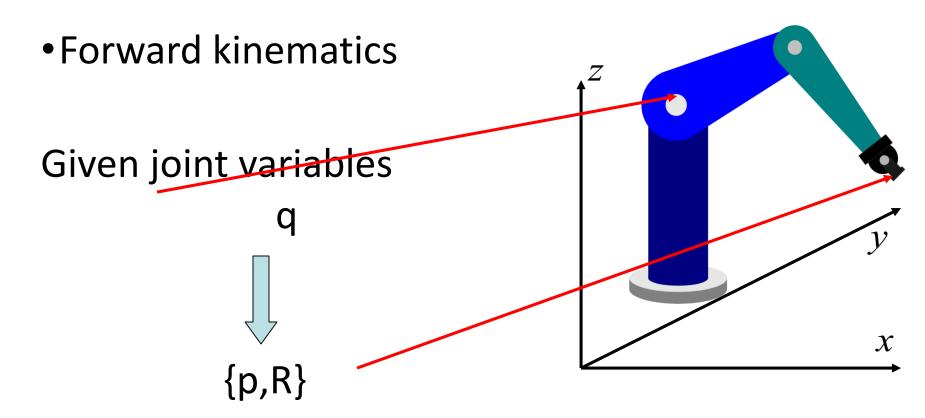


A one-degree-of-freedom closed-loop four-bar mechanism



(a) Closed-loop versus (b) open-loop mechanism

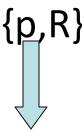
What is Kinematics



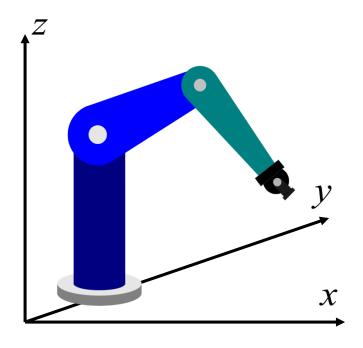
End-effector position and orientation, -Formula?

What is Kinematics

Inverse kinematics
 End effector position
 and orientation



Joint variables -Formula?



Example

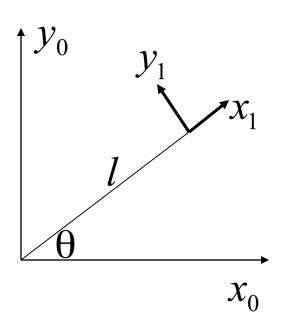
Forward kinematics

$$x_0 = l \cos \theta$$

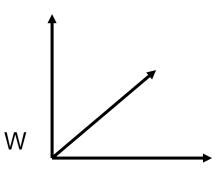
$$y_0 = l \sin \theta$$

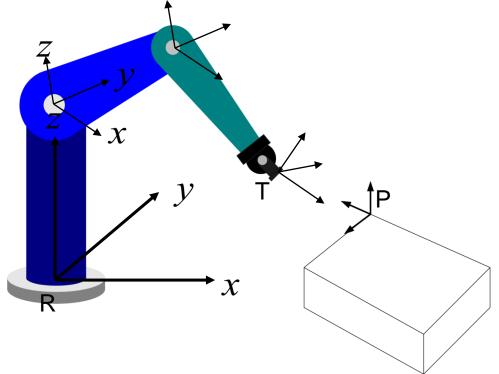
Inverse kinematics

$$\theta = \cos^{-1}(x_0/l)$$



- Robot Reference Frames
 - World frame
 - Joint frame
 - Tool frame





- Coordinate Transformation
 - Reference coordinate frame OXYZ
 - Body-attached frame O'uvw

Point represented in OXYZ:

$$P_{xyz} = [p_x, p_y, p_z]^T$$

$$P_{xyz} = p_x i_x + p_y j_y + p_z k_z$$

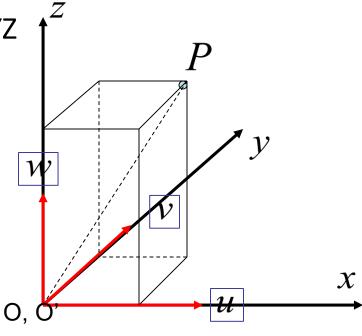
Point represented in O'uvw:

$$P_{uvw} = p_u \mathbf{1}_u + p_v \mathbf{j}_v + p_w \mathbf{k}_w$$

Two frames coincide ==>

$$p_u = p_x$$

$$p_u = p_x$$
 $p_v = p_y$ $p_w = p_z$



Properties: Dot Product

Let x and y be arbitrary vectors in R^3 and θ be the angle from x to y, then

$$x \cdot y = |x||y|\cos\theta$$

Properties of orthonormal coordinate frame

Mutually perpendicular

$$i \cdot j = 0$$

 $i \cdot k = 0$
 $k \cdot j = 0$

Unit vectors

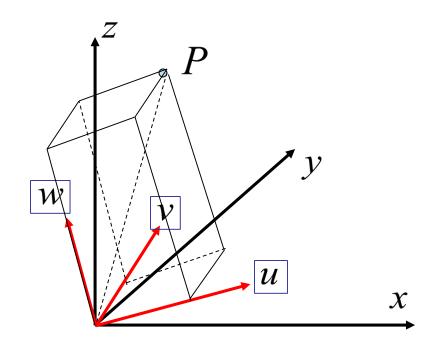
$$|i| = 1$$
$$|j| = 1$$
$$|k| = 1$$

- Coordinate Transformation
 - Rotation only

$$P_{xyz} = p_x 1_x + p_y 1_y + p_z k_z$$

$$P_{uvw} = p_u 1_u + p_v 1_v + p_w k_w$$

$$P_{xyz} = RP_{uvw}$$



How to relate the coordinate in these two frames?

- Basic Rotation
 - p_x , p_y , and p_z represent the projections of P onto OX, OY, OZ axes, respectively

• Since
$$P = p_u \mathbf{i}_u + p_v \mathbf{j}_v + p_w \mathbf{k}_w$$

$$p_x = \mathbf{i}_x \cdot P = \mathbf{i}_x \cdot \mathbf{i}_u p_u + \mathbf{i}_x \cdot \mathbf{j}_v p_v + \mathbf{i}_x \cdot \mathbf{k}_w p_w$$

$$p_y = \mathbf{j}_y \cdot P = \mathbf{j}_y \cdot \mathbf{i}_u p_u + \mathbf{j}_y \cdot \mathbf{j}_v p_v + \mathbf{j}_y \cdot \mathbf{k}_w p_w$$

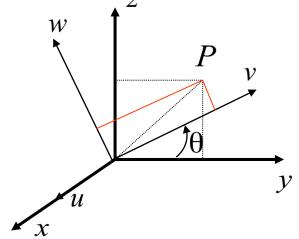
$$p_z = \mathbf{k}_z \cdot P = \mathbf{k}_z \cdot \mathbf{i}_u p_u + \mathbf{k}_z \cdot \mathbf{j}_v p_v + \mathbf{k}_z \cdot \mathbf{k}_w p_w$$

Basic Rotation Matrix

Basic Rotation Iviatrix
$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} i_x \cdot i_u & i_x \cdot j_v & i_x \cdot k_w \\ j_y \cdot i_u & j_y \cdot j_v & j_y \cdot k_w \\ k_z \cdot i_u & k_z \cdot j_v & k_z \cdot k_w \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ p_w \end{bmatrix}$$

• Rotation about x-axis with θ

$$Rot(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{bmatrix}$$



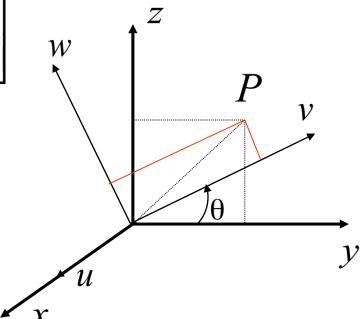
- •Is it True?
 - Rotation about x axis with θ

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ p_w \end{bmatrix}$$

$$p_{x} = p_{u}$$

$$p_{y} = p_{v} \cos \theta - p_{w} \sin \theta$$

$$p_{z} = p_{v} \sin \theta + p_{w} \cos \theta$$



Basic Rotation Matrices

• Rotation about x-axis with θ $Rot(x,\theta) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{vmatrix}$

ullet Rotation about y-axis with heta

ullet Rotation about z-axis with eta

$$Rot(y,\theta) = \begin{vmatrix} C\theta & 0 & S\theta \\ 0 & 1 & 0 \\ -S\theta & 0 & C\theta \end{vmatrix}$$

$$P_{xyz} = RP_{uvw}$$

$$Rot(z,\theta) = \begin{bmatrix} C\theta & -S\theta & 0 \\ S\theta & C\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Basic Rotation Matrix

$$R = \begin{bmatrix} i_{x} \cdot i_{u} & i_{x} \cdot j_{v} & i_{x} \cdot k_{w} \\ j_{y} \cdot i_{u} & j_{y} \cdot j_{v} & j_{y} \cdot k_{w} \\ k_{z} \cdot i_{u} & k_{z} \cdot j_{v} & k_{z} \cdot k_{w} \end{bmatrix}$$

$$P_{xyz} = RP_{uvw}$$

$$P_{xyz} = RP_{uvw}$$

• Obtain the coordinate of P_{mw} from the coordinate of Dot products are commutative!

$$\begin{bmatrix} p_{u} \\ p_{v} \\ p_{w} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_{u} \cdot \mathbf{i}_{x} & \mathbf{i}_{u} \cdot \mathbf{j}_{y} & \mathbf{i}_{u} \cdot \mathbf{k}_{z} \\ \mathbf{j}_{v} \cdot \mathbf{i}_{x} & \mathbf{j}_{v} \cdot \mathbf{j}_{y} & \mathbf{j}_{v} \cdot \mathbf{k}_{z} \\ \mathbf{k}_{w} \cdot \mathbf{i}_{x} & \mathbf{k}_{w} \cdot \mathbf{j}_{y} & \mathbf{k}_{w} \cdot \mathbf{k}_{z} \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix}$$

$$Q = R^{-1} = R^{T}$$

$$P_{uvw} = QP_{xyz}$$

$$Q = R^{-1} = R^T$$

$$QR = R^T R = R^{-1} R = I_3$$
 <== 3X3 identity matrix

Example

• A point $a_{uvw} = (4,3,2)$ is attached to a rotating frame, the frame rotates 60 degree about the OZ axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation.

$$a_{xyz} = Rot(z,60)a_{uvw}$$

$$= \begin{bmatrix} 0.5 & -0.866 & 0\\ 0.866 & 0.5 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4\\ 3\\ 2 \end{bmatrix} = \begin{bmatrix} -0.598\\ 4.964\\ 2 \end{bmatrix}$$

Example

• A point $a_{xyz} = (4,3,2)$ is the coordinate w.r.t. the reference coordinate system, find the corresponding point a_{uvv} w.r.t. the rotated OU-V-W coordinate system if it has been rotated 60 degree about OZ axis.

$$a_{uvw} = Rot(z,60)^{T} a_{xyz}$$

$$= \begin{bmatrix} 0.5 & 0.866 & 0 \\ -0.866 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4.598 \\ -1.964 \\ 2 \end{bmatrix}$$

Composite Rotation Matrix

- » A sequence of finite rotations
 - matrix multiplications do not commute
 - rules:
 - if rotating coordinate O-U-V-W is rotating about principal axis of OXYZ frame, then *Pre-multiply* the previous (resultant) rotation matrix with an appropriate basic rotation matrix
 - if rotating coordinate OUVW is rotating about its own principal axes, then post-multiply the previous (resultant) rotation matrix with an appropriate basic rotation matrix

Example

» Find the rotation matrix for the following operations:

Rotation ϕ about OY axis

Rotation
$$\varphi$$
 about OY axis

Rotation θ about OW axis =
$$\begin{bmatrix} C\phi & 0 & S\phi \\ 0 & 1 & 0 \\ -S\phi & 0 & C\phi \end{bmatrix} \begin{bmatrix} C\theta & -S\theta & 0 \\ 0 & C\alpha & -S\alpha \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\alpha & -S\alpha \\ 0 & S\alpha & C\alpha \end{bmatrix}$$

Rotation α about OU axis

 $R = Rot(y, \phi)I_3Rot(w, \theta)Rot(u, \alpha)$

$$= \begin{bmatrix} C\phi C\theta & S\phi S\alpha - C\phi S\theta C\alpha & C\phi S\theta S\alpha + S\phi C\alpha \\ S\theta & C\theta C\alpha & -C\theta S\alpha \\ -S\phi C\theta & S\phi S\theta C\alpha + C\phi S\alpha & C\phi C\alpha - S\phi S\theta S\alpha \end{bmatrix}$$

Answer...

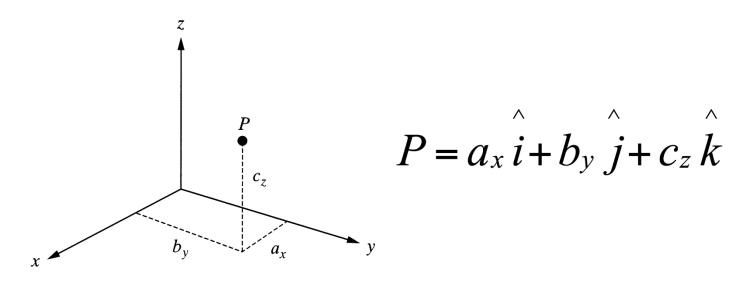
Pre-multiply if rotate about the OXYZ axes

Post-multiply if rotate about the OUVW axes

Representation of a Point in Space

A point P in space:

3 coordinates relative to a reference frame

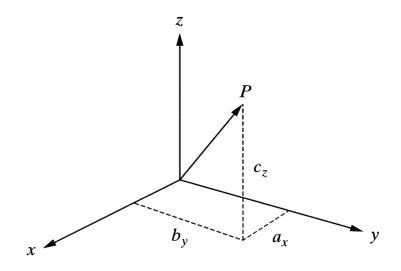


Representation of a point in space

Representation of a Vector in Space

A Vector P in space:

3 coordinates of its tail and of its head



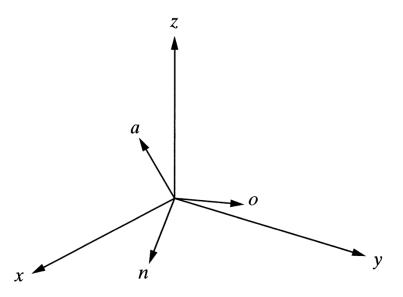
$$\overline{P} = a_x \hat{i} + b_y \hat{j} + c_z \hat{k}$$

$$[x]$$

$$\overline{P} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Representation of a Frame at the Origin of a Fixed-Reference Frame

Each Unit Vector is mutually perpendicular.: normal, orientation, approach vector

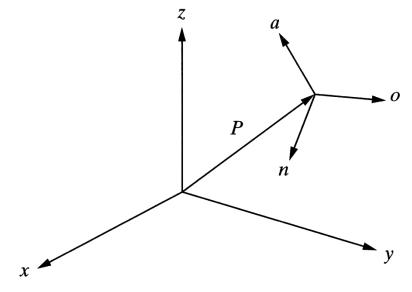


$$F = \begin{bmatrix} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{bmatrix}$$

Representation of a frame at the origin of the reference frame

Representation of a Frame in a Fixed Reference Frame

Each Unit Vector is mutually perpendicular.: normal, orientation, approach vector

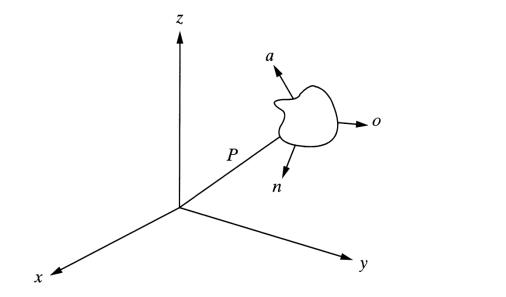


$$F = \begin{bmatrix} n_x & o_x & a_x & P_x \\ n_y & o_y & a_y & P_y \\ n_z & o_z & a_z & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Representation of a frame in a frame

Representation of a Rigid Body

An object can be represented in space by attaching a frame to it and representing the frame in space.



$$F_{object} = \begin{bmatrix} n_x & o_x & a_x & P_x \\ n_y & o_y & a_y & P_y \\ n_z & o_z & a_z & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Representation of an object in space

HOMOGENEOUS TRANSFORMATION MATRICES

A transformation matrices must be in square form.

- It is much easier to calculate the inverse of square matrices.
- To multiply two matrices, their dimensions must match.

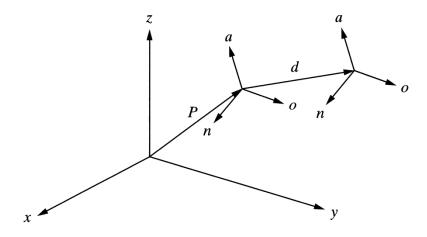
$$F = \begin{bmatrix} n_x & o_x & a_x & P_x \\ n_y & o_y & a_y & P_y \\ n_z & o_z & a_z & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

REPRESENTATION OF TRANSFORMATIONS

Representation of a Pure Translation

A transformation is defined as making a movement in space.

- A pure translation.
- A pure rotation about an axis.
- A combination of translation or rotations.



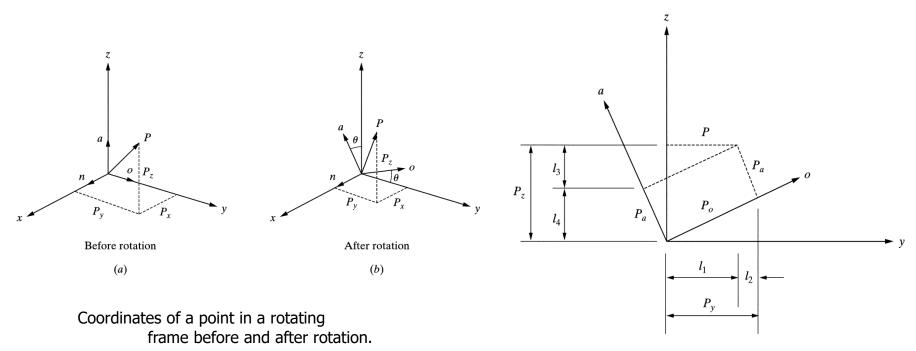
$$T = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Representation of an pure translation in space

REPRESENTATION OF TRANSFORMATIONS

Representation of a Pure Rotation about an Axis

Assumption: The frame is at the origin of the reference frame and parallel to it.

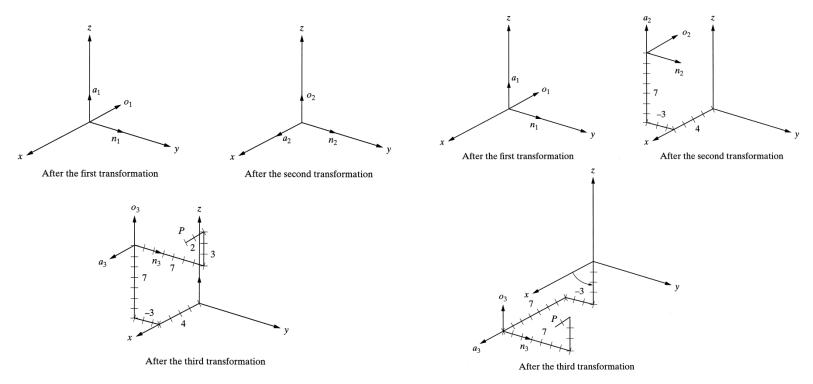


Coordinates of a point relative to the reference frame and rotating frame as viewed from the x-axis.

REPRESENTATION OF TRANSFORMATIONS

Representation of Combined Transformations

A number of successive translations and rotations....



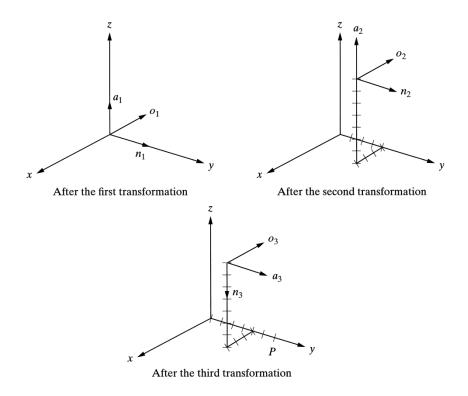
Effects of three successive transformations

Changing the order of transformations will change the final result

REPRESENTATION OF TRANSFORMATINS

Transformations Relative to the Rotating Frame

Example 2.8



Transformations relative to the current frames.

Thank you!

