

# MATE 318

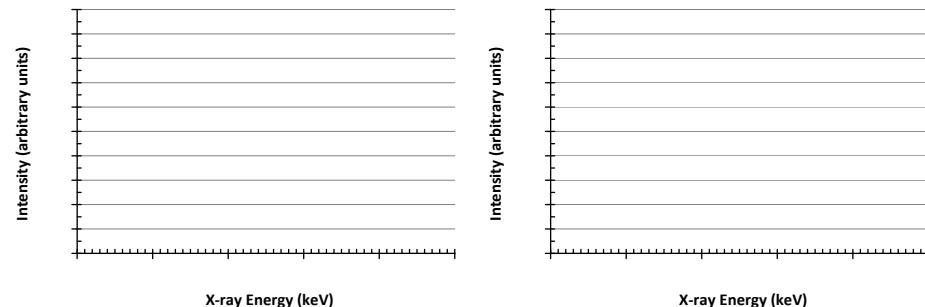
Spring 2025

## Homework #6

**Due: May 30<sup>th</sup>, 2025**

Group submission (up to 3 students per group) is allowed.

1


### Question 2

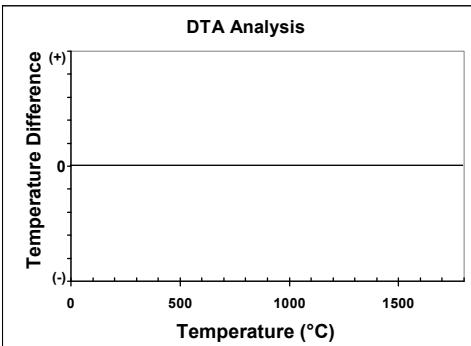
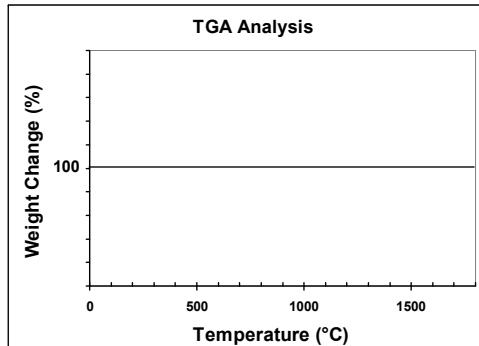
EDS counts of two Ti-Al-Nb ternary alloy samples one with a composition of 45 at.% Al and 4 at.%Nb, and the other with unknown composition are given in the table below. Determine the composition of the unknown alloy.

|                  |              | Ti K $\alpha$ | Al K $\alpha$ | Nb K $\alpha$ |
|------------------|--------------|---------------|---------------|---------------|
| Reference Sample | Comp. (at.%) | 51            | 45            | 4             |
|                  | EDS Count    | 15228         | 6335          | 918           |
| Unknown Sample   | Comp. (at.%) | ?             | ?             | ?             |
|                  | EDS Count    | 14391         | 5132          | 831           |

### Question 1

- On the figures below, sketch as accurately as you can the K $\alpha$  x-ray energy spectrum measured with an EDX detector in an electron microprobe for a sample consisting of a homogeneous solder alloy of composition 37 wt.% Pb and 63 wt.% Sn. Assume an electron beam energy of 90 keV was used. State other assumptions you make (if any).
- How would the spectrum differ if the electron beam energy was 45 keV? Why?

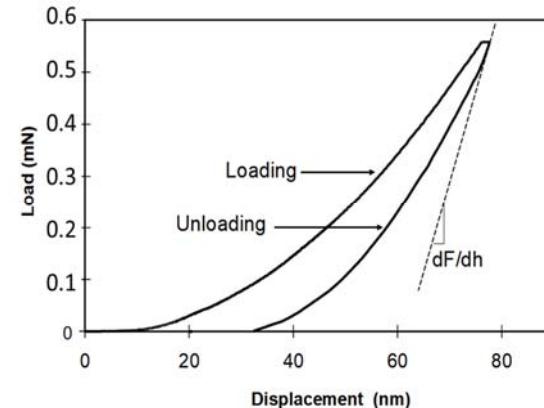




### Question 3

A WDS spectrometer which uses (200) planes of LiF as the analyzing crystal detects x-ray peaks from a sample at  $24.31^\circ$  and  $43.02^\circ$  in  $\theta$ . Assuming that the detected peaks are K $\alpha$  peaks, determine which elements are present in this sample.

$$d(200) \text{ of LiF} = 0.2015 \text{ nm}$$

#### Question 4


A sample of pure iron has been analyzed in ambient air using a combined TGA-DTA instrument with a heating rate of  $1^{\circ}\text{C}/\text{min}$ . Schematically draw the TGA and DTA curves you would expect for the temperature range of  $0^{\circ}\text{C}$ - $1600^{\circ}\text{C}$ .



#### Question 5:

The load vs. displacement curve given below belongs to a nanoindentation test performed on a hard coating using a diamond tip with perfect Berkovich geometry. Find the hardness (H) and elastic modulus (E) values of this coating in GPa.

For diamond take E as 1000 GPa and the Poisson's ratio as 0.06. Take the Poisson's ratio of the coating as 0.21. Take  $\beta$  as 0.75.

