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CHAPTER 9

Deflection of Beams

Deformation Under Transverse Loading
Relationship between bending moment and 

curvature for pure bending remains valid for 
general transverse loadings.
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1Fig. 9.3  (a) Cantilever beam with 
concentrated load. (b) Deformed beam 
showing curvature at ends.



Deformation Under Transverse Loading
Overhanging beam

Curvature is zero at points where the 
bending moment is zero, i.e., at each 
end and at E.
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Beam is concave upwards where the bending 
moment is positive and concave 
downwards where it is negative.

Maximum curvature occurs where the moment 
magnitude is a maximum.

An equation for the beam shape or elastic 
curve is required to determine maximum 
deflection and slope.

Reactions at A and C

Bending moment diagram

Fig. 9.4  (a) Overhanging beam with two 
concentrated loads. (b) Free-body diagram 
showing reaction forces.

Fig. 9.5  Beam of Fig. 9.4. (a) Bending-moment 
diagram. (b) Deformed shape.

Equation of the Elastic Curve

Substituting and integrating,
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From elementary calculus, simplified for beam 
parameters,
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Fig. 9.7  Slope (x) of tangent to the 
elastic curve.



Equation of the Elastic Curve
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Constants are determined from boundary 
conditions

More complicated loadings require multiple integrals and 
application of requirement for continuity of 
displacement and slope.

Three cases for statically determinant beams,

– Simply supported beam
0,0  BA yy

– Overhanging beam
0,0  BA yy

– Cantilever beam
0,0  AAy 

Fig. 9.8  Known boundary conditions for 
statically determinate beams.

Equation of the Elastic Curve
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Consider the simply supported beam, on left.
For this case 𝑀(𝑥) is defined piecewise. For the part AC 
and CB we have different expressions and therefore 
different differential equations. For example if 
|AC|=|CB|=L/2

For AC: 𝑀 𝑥 =
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௉௅

ଶ
−

௉௫

ଶ

As a result of integration of 𝑀 𝑥 over AC and CB we will 
get 4 integration constants.
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Thus, we need 4 support (boundary) conditions to 
determine the constants!



Equation of the Elastic Curve

C

P

1 2

2 conditions:

Other 2 conditions are obtained from the compatibility 
condition at C. 

Deflection and slope cannot be discontinuous.
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Determination of Elastic Curve from the Load 
Distribution

Equation for beam displacement becomes
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Integrating four times yields

For a beam subjected to a distributed load,
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Constants are determined from boundary 
conditions.

Fig. 9.12  Boundary conditions for (a) cantilever beam (b) simply supported beam.



Statically Indeterminate Beams

Conditions for static equilibrium yield
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The beam is statically indeterminate.

Consider beam with fixed support at A and roller 
support at B.

From free-body diagram, note that there are four 
unknown reaction components.
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Also have the beam deflection equation,

which introduces two unknowns but provides 
three additional equations from the boundary 
conditions:

0,At 00,0At  yLxyx 

Fig. 9.14  (a) Statically indeterminate beam with 
a uniformly distributed load. 
(b) Free-body diagram with four unknown
reactions.

Fig. 9.15  Boundary conditions for beam of Fig. 9.14.

Sample Problem 9.1
SOLUTION:
Develop an expression for M(x) and 

derive differential equation for 
elastic curve.

Integrate differential equation twice 
and apply boundary conditions to 
obtain elastic curve.

Locate point of zero slope or point of 
maximum deflection.

Evaluate corresponding maximum 
deflection.
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For portion AB of the overhanging beam, 
(a) derive the equation for the elastic curve,
(b) determine the maximum deflection,
(c) evaluate ymax.



Sample Problem 9.1
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- The differential equation for the elastic
curve,

SOLUTION:
Develop an expression for M(x) and derive 

differential equation for elastic curve.

- Reactions:
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- From the free-body diagram for section AD,
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Fig. 1  Free-body diagrams of beam and portion AD.
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Integrate differential equation twice and apply 
boundary conditions to obtain elastic curve.
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Substituting,

Fig. 2  Boundary conditions.



Locate point of zero slope or point of 
maximum deflection.




















32

6 L

x

L

x

EI

PaL
y

L
L

x
L

x

EI

PaL

dx

dy
m

m 577.0
3

31
6

0
2





















Evaluate corresponding maximum 
deflection.
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Fig. 3  Deformed elastic curve with location of 
maximum deflection.

Sample Problem 9.3 SOLUTION:
Develop the differential equation for the 

elastic curve (will be functionally 
dependent on the reaction at A).

Integrate twice and apply boundary 
conditions to solve for reaction at A
and to obtain the elastic curve.

Evaluate the slope at A.
For the uniform beam, determine the 
reaction at A, derive the equation for 
the elastic curve, and determine the 
slope at A.  (Note that the beam is 
statically indeterminate to the first 
degree)
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The differential equation for the elastic curve,

Consider moment acting at section D,
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Fig. 1  Free-body diagram of portion AD
of beam.

Integrate twice
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Fig. 2  Boundary conditions.
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Differentiate once to find the slope,

at x = 0,
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Substitute for C1, C2, and RA in the elastic 
curve equation,

Fig. 3  Deformed elastic curve showing 
slope at A.

Method of Superposition

Principle of Superposition:
Deformations of beams subjected to 

combinations of loadings may be 
obtained as the linear combination of 
the deformations from the individual 
loadings

Procedure is facilitated by tables of 
solutions for common types of 
loadings and supports.

Fig. 9.21b-d  (b) The beam’s loading can be obtained by superposing deflections due to (c) the 
concentrated load and (d) the distributed load.



Sample Problem 9.7

For the beam and loading shown, 
determine the slope and deflection at 
point B.

SOLUTION:
Superpose the deformations due to Loading I and Loading II as shown.

Fig. 1  Actual loading is equivalent to the superposition of two distributed loads.
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Fig. 2  Deformation details of the 
superposed loadings I and II.
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Combine the two solutions,

Fig. 1  Actual loading is equivalent to the superposition of two distributed loads.

Statically Indeterminate Beams

Method of superposition may be applied 
to determine the reactions at the 
supports of statically indeterminate 
beams.

Designate one of the reactions as 
redundant and eliminate or modify 
the support.

Determine the beam deformation without 
the redundant support.

Treat the redundant reaction as an 
unknown load which, together with 
the other loads, must produce 
deformations compatible with the 
original supports.

Fig. 9.22 (b) Analyze the indeterminate beam by superposing two determinate 
cantilever beams, subjected to (c) a uniformly distributed load, (d) the redundant 
reaction.



Sample Problem 9.8

For the uniform beam and loading shown, 
determine the reaction at each support and 
the slope at end A.

SOLUTION:
Release the “redundant” support at B, and find deformation.

Apply reaction at B as an unknown load to force zero displacement at B.

Fig. 1  Indeterminate beam modeled as superposition of two determinate simply supported beams with reaction at B
chosen redundant.

Sample Problem 9.8 Distributed Loading:
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Redundant Reaction Loading:
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Use of Singularity Functions
Singularity function (for 𝑛 ≥ 0)
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Use of Singularity Functions
Following relations hold

න 𝑥 − 𝑎 ௡ 𝑑𝑥 =
1

𝑛 + 1
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… whenever the quantity within the bracket is negative, then the bracket is equal to zero.

These functions can help to represent the bending moment 𝑀(𝑥) in terms of a 
single function.

Use of Singularity Functions
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Consider the following case:
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We can use (∗) in 2nd order differential equation

𝐴

𝐶

𝐵

𝑃

𝐿/4 3𝐿/4

𝑥

3𝑃

4

𝐴

𝐶

𝐵

𝑃

𝑃

4

𝑥



Use of Singularity Functions
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𝑐ଵ and 𝑐ଶ can be determined from boundary conditions 
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We do not need to determine additional 𝑐ଷ, 𝑐ସ which have been determined using slope 
and displacement continuity at point C. (The continuity of slope and deflection at 
point C are built in equations (1) and (2)).

Example 1

a) Determine the equation of elastic curve for
BC

b) Deflection at the midspan of BC
c) Slope at B
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𝒘𝑳𝟐

𝐸𝐼
𝑑ଶ𝑦

𝑑𝑥ଶ
=

3

5
𝑤𝐿𝑥 −

1

2
𝑤𝑥ଶ −

1

10
𝑤𝐿ଶ

𝐸𝐼
𝑑𝑦

𝑑𝑥
=

3

10
𝑤𝐿𝑥ଶ −

1

6
𝑤𝑥ଷ −

1

10
𝑤𝐿ଶ𝑥 + 𝐶ଵ

𝐸𝐼𝑦 =
1

10
𝑤𝐿𝑥ଷ −

1

24
𝑤𝑥ସ −

1

20
𝑤𝐿ଶ𝑥ଶ + 𝐶ଵ𝑥 + 𝐶ଶ

𝑥 = 0, 𝑦 = 0  ⇒   𝑪𝟐 = 𝟎

𝑥 = 𝐿, 𝑦 = 0  ⇒ 

0 =
1

10
𝑤𝐿ସ −

1

24
𝑤𝐿ସ −

1

20
𝑤𝐿ସ + 𝐶ଵ𝐿 + 0

𝑪𝟏 = −
𝟏

𝟏𝟐𝟎
𝒘𝑳𝟑

L/2
x

𝑤𝑃 =
𝑤𝐿

5

𝑅஻ 𝑅஼

J
𝑀𝑉

Example 1
Elastic curve:

a)

b)

c)

𝑦 𝑥 =
𝐿

2
=

−13𝑤𝐿ସ

1920𝐸𝐼

𝑑𝑦

𝑑𝑥
=

𝑤

𝐸𝐼

3

10
𝐿𝑥ଶ −

1

6
𝑥ଷ −

1

10
𝐿ଶ𝑥 −

1

120
𝐿ଷ

𝑦(𝑥) =
𝑤

𝐸𝐼

1

10
𝐿𝑥ଷ −

1

24
𝑥ସ −

1

20
𝐿ଶ𝑥ଶ −

1

120
𝐿ଷ𝑥

𝑑𝑦

𝑑𝑥
𝑥 = 0 =

−𝑤𝐿ଷ

120𝐸𝐼
= 𝜃஻ 𝜃஻

y



Example 2

Determine the equation of the elastic curve and 
the deflection at a=L/4.

𝐸𝐼
𝑑𝑦

𝑑𝑥
=

1

2
𝑅஺𝑥ଶ + 𝐶ଵ

𝐸𝐼𝑦 =
1

6
𝑅஺𝑥ଷ + 𝐶ଵ𝑥 + 𝐶ଶ

L/2L

𝑤𝑃

𝑎 =
𝐿

4

A B

x x

𝑤

𝑅஻ 𝑅஼

𝑀ଵ𝑉

𝑅஺

A
𝑀ଵ = 𝑅஺𝑥

𝐸𝐼
𝑑ଶ𝑦

𝑑𝑥ଶ
= 𝑅஺𝑥  ⇒

0 ≤ 𝑥 ≤ 𝑎

𝒚𝟏 =
𝟏

𝑬𝑰

𝟏

𝟔
𝑹𝑨𝒙𝟑 + 𝑪𝟏𝒙 + 𝑪𝟐 0 ≤ 𝑥 ≤

୐

ସ

1 2

Example 2

L/2L

𝑤𝑃

𝑎 =
𝐿

4

A B

x

𝑤

𝑅஼

𝑀ଶ𝑉

𝑅஺

A

x

𝑃
a ≤ 𝑥 ≤ 𝐿

𝑀ଶ = 𝑅஺𝑥 − 𝑃(𝑥 − 𝑎)

𝐸𝐼
𝑑ଶ𝑦

𝑑𝑥ଶ
= 𝑀 = 𝑅஺𝑥 − 𝑃 𝑥 − 𝑎

𝑑𝑦

𝑑𝑥
=

1

𝐸𝐼

𝑅஺𝑥ଶ

2
−

𝑃 𝑥 − 𝑎 ଶ

2
+ 𝐶ଷ

𝒚𝟐 =
𝟏

𝑬𝑰

𝑹𝑨𝒙𝟑

𝟔
−

𝑷 𝒙 − 𝒂 𝟑

𝟔
+ 𝑪𝟑𝒙 + 𝑪𝟒

1 2

𝑎
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L/2L

𝑤𝑃

𝑎 =
𝐿

4

A B

𝑦ଶ =
1

𝐸𝐼

𝑅஺𝑥ଷ

6
−

𝑃 𝑥 − 𝑎 ଷ

6
+ 𝐶ଷ𝑥 + 𝐶ସ

1 2
𝑦ଵ =

1

𝐸𝐼

1

6
𝑅஺𝑥ଷ + 𝐶ଵ𝑥 + 𝐶ଶ

BCs
𝑥 = 0, 𝑦ଵ = 0
𝑥 = 𝑎, 𝑦ଵ

ᇱ = 𝑦ଶ
ᇱ

𝑥 = 𝑎, 𝑦ଵ = 𝑦ଶ

𝑥 = 𝐿, 𝑦ᇱ = 0
𝑥 = 𝐿,  𝑦 = 0

1

2

3

4

5

1 ⇒ 𝑪𝟐 = 𝟎

2 ⇒  
1

2
𝑅஺𝑎ଶ + 𝐶ଵ =

1

2
𝑅஺𝑎ଶ + 𝐶ଷ 𝑪𝟏 = 𝑪𝟑

3 ⇒ 𝑪𝟒 = 𝟎

4 ⇒ 𝑪𝟑 =
𝟏

𝟐
𝐏 𝐋 − 𝐚 𝟐 −

𝟏

𝟐
𝐑𝐀𝐋𝟐

Example 2

L/2L

𝑤𝑃

𝑎 =
𝐿

4

A B

𝑦ଶ =
1

𝐸𝐼

𝑅஺𝑥ଷ

6
−

𝑃 𝑥 − 𝑎 ଷ

6
+ 𝐶ଷ𝑥 + 𝐶ସ

1 2
𝑦ଵ =

1

𝐸𝐼

1

6
𝑅஺𝑥ଷ + 𝐶ଵ𝑥 + 𝐶ଶ

BCs
𝑥 = 0, 𝑦ଵ = 0
𝑥 = 𝑎, 𝑦ଵ

ᇱ = 𝑦ଶ
ᇱ

𝑥 = 𝑎, 𝑦ଵ = 𝑦ଶ

𝑥 = 𝐿, 𝑦ᇱ = 0
𝑥 = 𝐿,  𝑦 = 0

1

2

3

4

5

5 ⇒ 𝑥 = 𝐿, 𝑦ଶ = 0

𝑦ଶ =
1

𝐸𝐼

𝑅஺𝑥ଷ

6
−

𝑃 𝑥 − 𝑎 ଷ

6
+

1

2
𝑃 𝐿 − 𝑎 ଶ −

1

2
𝑅஺𝐿ଶ 𝑥

𝑦ଶ =
1

𝐸𝐼

𝑅஺𝐿ଷ

6
−

𝑃 𝐿 − 𝑎 ଷ

6
+

1

2
𝑃 𝐿 − 𝑎 ଶ𝑥 −

1

2
𝑅஺𝐿ଶ𝑥 = 0

𝑅஺

𝐿ଷ

6
−

1

2
𝐿ଷ =

𝑃

6
𝐿 − 𝑎 ଷ −

1

2
𝑃 𝐿 − 𝑎 ଶ𝐿
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L/2L

𝑤𝑃

𝑎 =
𝐿

4

A B1 2

BCs
𝑥 = 0, 𝑦ଵ = 0
𝑥 = 𝑎, 𝑦ଵ

ᇱ = 𝑦ଶ
ᇱ

𝑥 = 𝑎, 𝑦ଵ = 𝑦ଶ

𝑥 = 𝐿, 𝑦ᇱ = 0
𝑥 = 𝐿,  𝑦 = 0

1

2

3

4

5

𝑅஺

𝐿ଷ

6
−

1

2
𝐿ଷ =

𝑃

6
𝐿 − 𝑎 ଷ −

1

2
𝑃 𝐿 − 𝑎 ଶ𝐿

𝑎 =
𝐿

4

𝑅஺

𝐿ଷ

6
−

𝐿ଷ

2
=

𝑃

6
𝐿 −

𝐿

4

ଷ

−
1

2
𝑃 𝐿 −

𝐿

4

ଶ

𝐿

𝑅஺ −
2𝐿ଷ

6
=

𝑃

6

3𝐿

4

ଷ

−
1

2
𝑃𝐿

3𝐿

4

ଶ

−𝑅஺

𝐿ଷ

3
=

𝑃

6
27

𝐿ଷ

64
−

1

2
𝑃𝐿

9𝐿ଶ

16

−
1

3
𝑅஺𝐿ଷ =

9𝑃𝐿ଷ

128
−

1

32
9𝐿ଷ  ⇒    −

1

3
𝑅஺𝐿ଷ =

9

128
−

4.9

128
𝐿ଷ𝑃

𝑅஺ =
3

128
27 ⇒   𝑹𝑨 =

𝟖𝟏

𝟏𝟐𝟖
𝑷

5 ⇒   𝑥 = 𝐿, 𝑦ଶ = 0

Example 2

L/2L

𝑤𝑃

𝑎 =
𝐿

4

A B1 2

BCs
𝑥 = 0, 𝑦ଵ = 0
𝑥 = 𝑎, 𝑦ଵ

ᇱ = 𝑦ଶ
ᇱ

𝑥 = 𝑎, 𝑦ଵ = 𝑦ଶ

𝑥 = 𝐿, 𝑦ᇱ = 0
𝑥 = 𝐿,  𝑦 = 0

1

2

3

4

5

𝑅஺

𝐿ଷ

6
−

1

2
𝐿ଷ =

𝑃

6
𝐿 − 𝑎 ଷ −

1

2
𝑃 𝐿 − 𝑎 ଶ𝐿

If 𝑎 = 𝐿/3

𝑅஺

𝐿ଷ

6
−

𝐿ଷ

2
=

𝑃

6

2𝐿

3

ଷ

−
1

2
𝑃

2𝐿

3

ଶ

𝐿

−𝑅஺

𝐿ଷ

3
=

𝑃

6

8𝐿ଷ

27
−

1

2
𝑃

4𝐿ଷ

9

𝑅஺ = −3
4

81
−

2

9
= −3

4

81
−

18

81
⇒ 𝑹𝑨 =

𝟏𝟒

𝟐𝟕
𝑷

5 ⇒   𝑥 = 𝐿, 𝑦ଶ = 0

If 𝑎 = 𝐿/3

𝑹𝑨 =
𝟏𝟒

𝟐𝟕
𝑷 = 𝟎. 𝟓𝟏𝟖𝟓𝑷

If 𝑎 = 𝐿/4

𝑹𝑨 =
𝟖𝟏

𝟏𝟐𝟖
𝑷 = 𝟎. 𝟔𝟑𝟐𝟖𝑷
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𝑦ଵ =
1

𝐸𝐼

1

6
0.6328𝑃𝑥ଷ +

1

2
𝑃 𝐿 − 𝑎 ଶ𝑥 −

1

2
𝑅஺𝐿ଶ𝑥 𝑎 = 𝐿/4 𝑅஺ = 0.6328𝑃

𝑦ଵ =
1

𝐸𝐼
0.10547𝑃𝑥ଷ +

1

2
𝑃

3𝐿

4

ଶ

𝑥 −
1

2
0.6328𝑃𝐿ଶ𝑥

𝒚𝟏 =
𝟏

𝑬𝑰
𝟎. 𝟏𝟎𝟓𝟒𝟕𝑷𝒙𝟑 + 𝟎. 𝟐𝟖𝟏𝟐𝟓𝑷𝑳𝟐𝒙 − 𝟎. 𝟑𝟏𝟔𝟒𝑷𝑳𝟐𝒙

𝒚𝟐 =
𝟏

𝑬𝑰
𝑹𝑨

𝒙𝟑

𝟔
−

𝑷

𝟔
𝒙 − 𝒂 𝟑 +

𝟏

𝟐
𝑷 𝑳 − 𝒂 𝟐𝒙 −

𝟏

𝟐
𝑹𝑨𝑳𝟐𝒙

Equation of elastic curve:

for 𝑥 = 𝐿/4

𝑦ଵ =
1

𝐸𝐼
0.10547𝑃

𝐿

4

ଷ

+ 0.28125𝑃𝐿ଶ
𝐿

4
− 0.3164𝑃𝐿ଶ

𝐿

4

𝑦ଵ =
1

𝐸𝐼
1.648𝑥10ିଷ𝑃𝐿ଷ + 0.0703𝑃𝐿ଷ − 0.0791𝑃𝐿ଷ 𝒚𝟏 = −𝟕. 𝟏𝟓𝟐𝒙𝟏𝟎ି𝟑

𝑷

𝑬𝑰
𝑳𝟑




