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CHAPTER 9

Deflection of Beams

|
Deformation Under Transverse Loading

oy e S s i o i Relationship between bending moment and
P curvature for pure bending remains valid for

| general transverse loadings.
\ B
A F 1 _M®)
! L p El
(a)
Cantilever beam subjected to concentrated
P load P at the free end,
5 1__F
P EI

Py Curvature varies linearly with x

)

1
At the free end 4, EZO, pPg=o

Fig. 9.3 (a) Cantilever beam with 1
concentrated load. (b) Deformed beam At the support B, —=0, pB‘ = PL
showing curvature at ends. PB

£
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Fig. 9.4 (a) Overhanging beam with two
concentrated loads. (b) Free-body diagram
showing reaction forces.

Fig. 9.5 Beam of Fig. 9.4. (a) Bending-moment
diagram. (b) Deformed shape.

Deformation Under Transverse Loading

Overhanging beam
Reactions at 4 and C

Bending moment diagram

Curvature is zero at points where the
bending moment is zero, i.e., at each
endandatE£. 1 M(x)

p EI

Beam is concave upwards where the bending
moment is positive and concave
downwards where it is negative.

Maximum curvature occurs where the moment
magnitude is a maximum.

An equation for the beam shape or elastic
curve is required to determine maximum
deflection and slope.

Fig. 9.7 Slope ¢(x) of tangent to the
elastic curve.
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Equation of the Elastic Curve

From elementary calculus, simplified for beam

parameters,

T a2
Wﬂ "
dx

X -

Substituting and integrating,

2
Ell:Eld—;
P dx

=M(x)
d X
EI10~EI = [M(x)dx+Cy
dx 0

X X
Ely= jdij(x)dx+ Cix+Cy
0 0




|
Equation of the Elastic Curve

Constants are determined from boundary
conditions

1
£

Y B

X X
Ely= jdx‘[M(x)dx+ Cix+C,
‘ ya=0 ‘ yp=0 0 0

(a) Simply supported beam

- Three cases for statically determinant beams,

|

— Simply supported beam

£ S
=0 i ya=0 s =0
N Yp=
(b) Overhanging beam _ Overhanglng beam
y4=0, yp=0
* — Cantilever beam
ya=0, 04=0

A >V *

!/’

A

S

ya=0 |
s More complicated loadings require multiple integrals and
application of requirement for continuity of

Fig. 9.8 Known boundary conditions for dlsplacement and Slope.
statically determinate beams.

(¢) Cantilever beam

|
Equation of the Elastic Curve

Consider the simply supported beam, on left.

For this case M (x) is defined piecewise. For the part AC
—« and CB we have different expressions and therefore
different differential equations. For example if
|AC|=|CB[=L/2

Px

For AC: M(x) = =% For CB: M(x) = = — =

ya=0 yp=0

(a) Simply supported beam

2
As a result of integration of M (x) over AC and CB we will
get 4 integration constants.

Xc Xc XB XB
Ely:f dxf M(x)dx + C;x + C, Ely = f dx f M(x)dx + C3x + C,
0 0 Xc xc

Thus, we need 4 support (boundary) conditions to
determine the constants!




Equation of the Elastic Curve
2 conditions: ya=0, yz=0

Other 2 conditions are obtained from the compatibility
condition at C.

(a) Simply supported beam

n@| =yl
xX=xc xX=xc

_ dy; _dy,
61(x) |x=xc =0,(x) |x=xc (E ~dx

X=Xc

Deflection and slope cannot be discontinuous.

. |
Determination of Elastic Curve from the Load

Distribution

y’ For a beam subjected to a distributed load,

LR

dx dx2 dx -
A
Equation for beam displacement becomes
. ,;l 2 4
[ya=0] [Vy=0] d*M d
\r,\L 0] [A\l:‘, =0] 5= E[% = —W(x)
dx dx

(a) Cantilever beam

! Integrating four times yields

El y(x)= —‘[ dx‘[ dx‘[ dxj w(x)dx

1 3.1 2
+EC1.X +§C2x + C3x+ C4

[ya=0] lys= 0] Constants are determined from boundary

M,=0 Mp= 0 "
W=l s conditions.
(b) Simply supported beam

Fig. 9.12 Boundary conditions for (a) cantilever beam (b) simply supported beam.
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Statically Indeterminate Beams

Consider beam with fixed support at 4 and roller
support at B.

From free-body diagram, note that there are four
[—a—i" unknown reaction components.

A ; Conditions for static equilibrium yield

B

%% YF. =0 YF,=0 YM,=0

Fig. 9.14 (a) Statically indeterminate beam with The beam is statically indeterminate.
a uniformly distributed load.
(b) Free-body diagram with four unknown

reactions. Also have the beam deflection equation,

X X
Ely= J’dij(x)dx +Cx+Cy
0 0
which introduces two unknowns but provides
[r=0.0=0] , three additional equations from the boundary
2=ty =0 R conditions:

Fig. 9.15 Boundary conditions for beam of Fig. 9.14.

Atx=0,0=0y=0 Atx=L,y=0

|
Sample Problem 9.1

SOLUTION:
Develop an expression for M(x) and
P derive differential equation for
elastic curve.
A B
[ 1C . . . .
B Integrate differential equation twice
‘ ‘ and apply boundary conditions to
; L ~—a— obtain elastic curve.
W14x68  [=722in" E=29x10"psi Locate point of zero slope or point of
P=50kips L=15ft a=4ft maximum deflection.
For portion 4B of the overhanging beam, Evaluate corresponding maximum
(a) derive the equation for the elastic curve, deflection.

(b) determine the maximum deflection,
(c) evaluate y,,,.




SOLUTION:
Sa m ple PrObIem 9' 1 Develop an expression for M(x) and derive

H" differential equation for elastic curve.

A B | /

{ 1c )
=B ‘ - Reactions:
L a— Pa a
' Ry=—1\ Rz=P1+=|1
P 4 L B [ L)
A B \4 . .
’ |C - From the free-body diagram for section 4D,
A u
L&, R, M :—sz (0<x<L)
L ! a
! ‘ - The differential equation for the elastic
Dw
A | )™ curve, )
| B - py
VR =P1 dx L

Fig. 1 Free-body diagrams of beam and portion AD.

Integrate differential equation twice and apply

y
[x=0y=0] - boundary conditions to obtain elastic curve.
A BN z EI@:—ngx2+C1
‘ X ’C dx 2 L
| L —a—~ 1 a3
Ely=—P—x"+Cix+C
Y= 1 2

Fig. 2 Boundary conditions.
atx=0,y=0: C,=0

atx=L,y=0: EI(0)= %P%E +CL G :%PaL

2
i d
Substituting, EI—?:—ng
dx L .
- lpa2 lp, v _Pa 1—3@)
a2 L 6 dx  G6EI L

Ely=—p%3 L pars
6 L" 6

3 Pal? x_[xf
Y 6El | L L




y Locate point of zero slope or point of
g Y maximum deflection.

" — === x 2
v &%C dy_om{l—{x’”j } xm:%:0.577L

\ dx 6EI L

i X

Fig. 3 Deformed elastic curve with location of

maximum deflection. . .
Evaluate corresponding maximum

deflection.
_Pal*|x (XT
YT eEr | L L
Pal’? [ 3] Pal?
Ymax = "cpr 0.577-(0.577)| |¥max = 0.0642 oLl
Ymax = 0.0642 (50k1ps)(481n)(] 801n)

6(20x10%psi[723in*)

Vimax = 0.238in

. __________________________________________________________|
Sample Problem 9.3 SOLUTION:

Develop the differential equation for the
elastic curve (will be functionally
dependent on the reaction at A4).

Integrate twice and apply boundary
conditions to solve for reaction at 4

| and to obtain the elastic curve.
L |

TV Y

AL

. . Evaluate the slope at 4.
For the uniform beam, determine the

reaction at 4, derive the equation for
the elastic curve, and determine the
slope at 4. (Note that the beam is
statically indeterminate to the first
degree)




i Consider moment acting at section D,
I <’ - \'> ;
5 (wor ) ]

Fig. 1 Free-body diagram of portion AD 6L
of beam.

The differential equation for the elastic curve,

2 3
Eld—;zM = R x— 0%
dx 6L

Integrate twice
[x=1L, 9=10] d 1 4
. br=tog =1 EI =E10=_R;x* - "% 1
=0y =0] dx 2 24L
A _ ,/’j‘ B .
e S a 1. 3 wx’
— Ely=—Ryx"———+Cx+C
YT T T2

Fig. 2 Boundary conditions.
Apply boundary conditions:
atx=0,y=0: C,=0

3
atx=1,0-0: LR, 2" L —0
d’y 3 2 24

1

4

3 WoL

R, L —"—+CL+Cy,=0
6 A% T 0 T2

Solve for reaction at 4
1

3 1 4 1
R, ——wyL" =0 Ry=—wyL T
3747 73070 4790

atx=L,y=0:




Fig. 3 Deformed elastic curve showing
slope at A.

X

Substitute for C;, C,, and R, in the elastic
curve equation,

5
Ely= l(i WoL)x3 _ ot _ (L w0L3)x
6110 120L  \120

‘y =" (— X420 - L4x1
120EIL

Differentiate once to find the slope,

— o o (54622 g3
dx  120EIL
3
atx = 0, QA = WOL
120E1

Principle of Superposition:
Deformations of beams subjected to
combinations of loadings may be

loadings

obtained as the linear combination of
the deformations from the individual

Method of Superposition

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

P = 150 kN

Fig. 9.21b-d (b) The beam'’s loading can be obtained by superposing deflections due to (c) the
concentrated load and (d) the distributed load.

L =8m —»‘

bl
A Lyyyy it iag
B A . A
=3 |/)
=3

x=2m

———L=8m—

(d)

Procedure is facilitated by tables of
solutions for common types of
loadings and supports.




Sample Problem 9.7

e B
SIILER

Y

C

B

L/2

L/2

SOLUTION:

uw

Cy vy

L/ﬂ—'l—L/i—»

A

A

B

!/I

For the beam and loading shown,

determine the slope and deflection at
point B.

Superpose the deformations due to Loading I and Loading II as shown.

Loading I Loading 11

1w
YVYYVYVVYYVYY

—

B

+ b

—r2——12—

)
| u

I
I

Fig. 1 Actual loading is equivalent to the superposition of two distributed loads.

Loading 1

?/|

Fl///’f‘ -

Fig. 2 Deformation details of the
superposed loadings I and II.

A w Loading I
HMHHHHB
| | O -5 w)-2E
! L ! 6EI 8EI
.’/‘
e — ——  Loading I
A \ IRZ:2
=—=1.(0x4) 3 4
B B wL wL
o, =— y =
Loading I1 ( C)H 48E1 ( C)H 128E1
A s, B . .
TTI1 1, ] In bearr(li stigmlentt CB, the ‘pend{[ng. rr}llctJrlpent is
— zero and the elastic curve is a strai ine.
— g —l— L/zJ g

wL3
(QB )11 = (9C)11 = @
(g, = wit | w [5): 7wL*
VB 1081 T 48EI\ 2 ) 384EI




Loading 1 Loading I1

U A u
| ("_! TR 1 | EEEER! Y I
A i i B 1 )
—1e —»l-— L2 4 P L*J F— L2 *»F— L2 —
:/| !/‘ !/‘ /}i O
o 1.
X — _ 2 :::::::,//' y B
‘7\ _—— i Ys A - — | (s /+ h *
'\5 . Ty, Y

L(Op)

=
=

Fig. 1 Actual loading is equivalent to the superposition of two distributed loads.

Combine the two solutions,

wL wL3 7wl
05 =0 Op)y =———+ T
5= O8) 4 O ==y * 4 b 48kl

wlt 7wt 41wt
YB :(yB)I +(yB)H :_SEI 384E] VB __384E1

|
Statically Indeterminate Beams

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

()
Fig. 9.22 (b) Analyze the indeterminate beam by superposing two determinate

cantilever beams, subjected to (c) a uniformly distributed load, (d) the redundant
reaction.

Method of superposition may be applied Determine the beam deformation without

to determine the reactions at the the redundant support.
supports of statically indeterminate
beams. Treat the redundant reaction as an

unknown load which, together with
the other loads, must produce
deformations compatible with the
original supports.

Designate one of the reactions as
redundant and eliminate or modify
the support.




Sample Problem 9.8

w

LIV L34 LR ETT
Y EERRNRIRR C For the uniform beam and loading shown,
o B =& . .
’ determine the reaction at each support and
2L/3 {<L/3—|  theslope atend 4.
L
SOLUTION:

Release the “redundant” support at B, and find deformation.

Apply reaction at B as an unknown load to force zero displacement at B.

W T T T
RAR] YV YYYVYYYYYYYVYY A B [
A TS  ammes i C — AEEmmm—— ' | —— asmm—
it A m)éL B A + jéL A A
IR ’[1:,‘
2L/3——|=L/3— [~——2L/3 L/3—~] 2L/3——>=L/3—|
Y Y y B
B C x @ & — &
A P . X — A X A A X
S =2 — A8 - a t+ e A

B ) ?
lys =0 0 ¥ Al

Fig. 1 Indeterminate beam modeled as superposition of two determinate simply supported beams with reaction at B
chosen redundant.

Sample Problem 9.8  Dpistributed Loading:

[x4 -2 + Px

w
(yB)W_ 24E]

At point B, x=2L

. R

4
_ 001132
EI




- Redundant Reaction Loading:
2,2
At x=a, y:—Pa b
3EIL
A B c For a:%L and b:%L
1‘1{; 2,72
<—2L/3—>1<—,L/3—> (vg)p = Rp (E L) (éj
) . R 3E\37) 3
p———— C_x 3
- o T —0.01646 8L
(00 (yB)r EI
OOy, O L s » e
B B
‘ Ry ‘ ‘ TP‘/;
[«—— 2L/3——|<L/3— 2L/3 ~L/3— [~——2L/3 |<—L/3—]
y y| y‘ N
S — g = o ———
s G - \\;iz:\,,rgziiﬂ + A A
B (O4)r YBlr

lyp = 0] (64), (B

For compatibility with original supports, y; =0

wL* RpI?
0= =-0.011322= 1 0.01646-8—
(yB)W +(yB)R il + El

Rp =0.688wL T

From statics,
Ry=0271wLT  Ro=0.0413wL 7]




w w

TERENY! P A B¢

w = AE————=—c + W
Ry Ry
‘«— OL/3——|~L/3— L— oL/3 J«L/B »‘ L— 2L/3 |~ L/3—
y Y Y B
A //,li; \;(7 B o A | » /C ] A e, C 1
. — == . = jég\\\::g? _ '//////A + & A
| B (Or)r yB)r
lygp=0 (B4)y (g
Slope at end 4,
3 3
wL wL
=— =-0.04167——
@)y 24E] EI

2 ;2 2 3
01), = _Pb(L b ): 0.0688wL [éj 2 _(5) —0.03308"L
6EIL 6EIL 3 3 El

3 3 3
04=04),+04)5 = —0.04167% + 0.03398‘21} 0, = —0.00769%

|
APPENDIX D Beam Deflections and Slopes
Maximum
Beam and Loading Elastic Curve Deflection Slope at End Equation of Elastic Curve
1
. y
L 3 ;
. ﬂ x 7PL3 7PL1 __F (* - 3L
N T~ e | 3EI 2EI Y eEr T
__,___EL__,_,_! ”
7T —y 4
e O % | HD . g = (o — 4L + 6LAY)
L S~ _t Ymax SET GEI 24ET
¥
of = 5 ML ML M
o — : . y=——u
i W 2EI EI ‘ 2ET
Z M o
¢
‘*%La@ P For x = %L:
PP PL? P 5 5
= *+ — y=——(#" — 3L%)
~ 4SET 16E1 = 4SEI
‘ I ‘ - gl_w‘ Y,




P
” : Ve L. Fora > b: Forx < a:

SN LN b PO(L? — B PU(L? — 1) rh 5
ey | PR - -

Op = —7 = O = (L2 - b
s 0 | an 2 OV3EIL A OEIL ¥=eEmF ~ U T EK]
A s ~ — " I — 12 Pa(L? — d°) Pa®h?
‘ ‘ B At = ] - ) Op = +——— Forx=a: y=——%
~ L—— e Y 3 GEIL : 3EIL
6
Swl? N wl® w

+ = A 91 + I
384E1 24E] Y= o O t %)

o L )

~ P ML g LML M gy
A | A NE T gy 47 Vel Y7 T SEIL o
£ bt oL J

Use of Singularity Functions

Singularity function (for n > 0)

(x—a)n={(x—0a)" x=za

-a)=1 x=a
<x—a)°={(x aO) Y <a

(x —a)° (x — a)? (x —a)?




Use of Singularity Functions

Following relations hold

(x—a)y**l for n=0

f(x—a)”dx=n+1

a(x— a*=n{(x—ay*1! for n>1
(...) whenever the quantity within the bracket is negative, then the bracket is equal to zero.

These functions can help to represent the bending moment M (x) in terms of a
single function.

Use of Singularity Functions

Consider the following case:

P P

A | ------ x A
y A e

L/4 3L/4 —

Between A and C M; (x) = %x (0 <x< %)

Between C and B M, (x) = %x —P(x —%) G <x< L)

M (x) can also be written as L L
x =1L/, then<x——>=x——
M =x-plr-2) n
x)=—x—P{x—~ *
4 4 x <L then<x—§>=0

We can use (*) in 2" order differential equation




Use of Singularity Functions

El d’y =M
dxz - (X)
@y _sp | L
axz 4T\ g
Integrating in x, we have
d 3 pl 1L\’ 3 pl 1\’
y —
El— = EI6(x) = §sz - E(x _Z> +a @ Ely = ﬁPx3 - g<x 3 taxte @
¢4 and ¢, can be determined from boundary conditions
x=0 y=0 x=L y=0 3
0=2pz—2pLL) 4oL
0=c, -8 6" \a @
16 9 7 2
2 7 \p3=— €, = ——=PL
(128 128) PP =—al T 128

We do not need to determine additional c3, ¢, which have been determined using slope
and displacement continuity at point C. (The continuity of slope and deflection at
point C are built in equations (1) and (2)).

Example 1
P = W—L w
lv 5 l 1 l I. l l l 1 l l ] l I l I, I I a) gétermme the equation of elastic curve for

b) Deflection at the midspan of BC

Al C
% ﬁ%ﬁ c) Slope atB
— L2 L
wL

pP=— M =0

[ ° [0 e, o= tui

4+ wL=—RzL=0

+ 5 2 2
Al B (o]
R —0n +
L2 B L ‘RC 2B =0 ‘l/
wL 4wl 2
wL +—— —Rc=0 R¢=—-wlL




Example 1

For BC:
wL
= ? w
l, ] yM; = 0+

I >
—
N
|_=
-
[vs]
—

wL L+ 4 Ly + x+M_0
> x 5Wx (wx)2 =
3

5
1 1
X M = ngx—wa2 —EWLZ
d%y 1, 1 2
IWZEWLx_wa —EWL x=0y=0 = €C;=0
1Y 3 e Y- Y s xZLiyZO 1 1
— = —WLX" — WX~ ——WL™X
dx 10 6 10 ! 0=—wl*——wl*——wl*+ L + 0
1 1 1 10 24 20
Ely = —wLx3 — —wx* — —wl?x%2 4+ C;x + C, 1
10 24 20 C,=——wl3
1 120

Example 1

Elastic curve:

w1l 1 1 1
a) y(x)=E<ELx3—ﬁx4—%L2x2—mL3x>

dy w3 . 1., 1, 1
a—ﬁ<ﬁ“ T8 1ol T 10t
b) L\ —-13wl* y
Y\*T2) 7~ 192081 |
c)

dy( _O)_—WL3_9
dx & T ) T 10051 T VB TL6s




Example 2

P
A [0) l ® B Determine the equation of the elastic curve and
) the deflection at a=L/4.
A 0<x<a
:1 V7M1 Ml = RAx
{ Eldzy—R =>E1d——1Rx2+C
.ﬁx dx? ax dx 274 !
Ely = gRAxg + Clx + CZ
! 1R 3+Cix+C L
=—|=Ryx X z
Y1 El\g A 1 2 OSxS4
1 ————————
Example 2
P
A @1 © B
as<x<lL
P
My = Ryx — P(x — a)
A a :
! d-y
” 1V M, E1E=M=RAX—P(.X_Q)
R 2 — 2
L4 d_yzi Ryx* P(x—a) re,
dx EI\ 2 2
1 (Ryx> P(x—a)?
y2=ﬁ 6 - 6 +C3x+Cy




Example 2
1/1 3
@ B Y1=E gRAx +C1x+C2
1 (Ryx® P(x—a)d
yZ:E( 6 — 6 +C3.X'+C4_
@ = C2=0
— 1 1
x=0, 3 =010 © = CRa?+C =5Rua?+C; C1=0C3
X =a f = ’@ 2 2
) Yi=1Y2
x=a, v, =y,|@ ® = ¢=0
x=1L y' =0 @
’ ) 1 1
x=1, y=0 @ = C3=EP(L—a)2—ERAL2

Example 2
g . P+ Cx+C
©) B Y1_E 3 ax 1X 2
1 (Ryx® P(x—a)d
V2 :E( A6 — 6 +C3X+C4_)

® = x=Ly,=0

x=0 ©) 1 (Ryx® P(x—a)d 1 1
= - ZP(L - a)? —=R,L?
x=a, y{=yég Y2 EI( 6 A VS L
x=a Y1 =2 3 3
, 1 (RJ? P(L—a) 1 1
x:L, y: @ —_ A _ Zp(L - 2 __RLZ =0
x=L y=o |@ EI< 6 5 TP ax Rl

21 P 1
Ra| o =50 | =g @-a)’—-PUL-a)L




Example 2

©) B L1 P 1
Ryl——=3)==(UL-a)3-=P( —a)?L
i\ T3 6( a) > L-a)
L
“=7
3 13\ P L\ 1 L\*
s e i E
A
=0, 7,.=0]0 6 2/) 6 34 2 24
= "= ! 213\ P /3L 1 3L
RS S A N P E
x =aq, V1=, 6 6\ 4 2 4
x=L y=0]9 QP L1 91
x=1, y=0 © 43767764 2 16
—lRL3—9H}—i@ﬁ > —lRL3— jL—ff-HP
374° T 128 32 374" T \128 128
R, = 3(27)=>R—81P
47128 47128
[
Example 2
p ® = x=Ly,=0
@) B 21 P 1
Ryl——=3)==(UL-a)3-=P( —0a)?L
i\ g3 6( a) > L-a)
lfa=1L/3

x=0

x=a, Y=Y
X =aq, V1 =Y2
x =1, y' =
x=1L, y=0

oJclelels

. (L_B_L:)_E(Z_L)g

A6 2) 6\3
13 P8L3 1 413

Rz =g P9

R—342—3
n=3g179)"

418ﬁR—P
81 81)” M727

1, 2L2L
2 \3

14
27

lfa=1L/3

R, = 2 p_0.5185P
A7 7 T

Ifa=L/4

R ——81P—0 6328P
47 128" —
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Example 2

Equation of elastic curve:

1 (1 1 1 _
y = 5(60.6328Px3 +5P(L—a)’x - ERAL2x> a=1L/4 Ra=06328P

2 0.10547P 3+1P 3L’ 106328PL2
1 =5\ 0 x* 43P ) x=350. x

1
y1 = ﬁ(0. 10547Px3 + 0.28125PL%x — 0.3164PL?%x)

EI\"*6
forx = L/4

1 x3 P 5, 1 , 1
y2=—|R —g(x—a) +EP(L—a) x—ERALx

~ 1 {0.10547p (E 3+028125PL2L 0.3164PL2
= E\ 4 ' PR 4

P
1 — _ -3 3
y1 = 7 (1.648x1073PL3 + 0.0703PL* = 0.0791PL%) 7 7.152x107 g7 L






