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CHAPTER 6
Shearing Stresses in Beams and Thin-Walled 

Members

Introduction
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Distribution of normal and shearing stresses 
satisfies

Transverse loading applied to a beam results 
in normal and shearing stresses in 
transverse sections.

Longitudinal shearing stresses must exist in 
any member subjected to transverse 
loading.

When shearing stresses are exerted on the 
vertical faces of an element, equal stresses 
must be exerted on the horizontal faces

Fig. 6.1  All the stresses on elemental 
areas (left) sum to give the resultant 
shear V and bending moment M.

Fig. 6.2  Stress element from section of a 
transversely loaded beam.



Shear on the Horizontal Face of a Beam Element

Consider prismatic beam AB

For equilibrium of beam element
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Fig. 6.5  Short segment of beam with stress 
element CDD’C’ defined.

Fig. 6.4  Transversely loaded beam with 
vertical plane symmetric cross section.

Fig. 6.6  Forces exerted on element CCD’C’.

Shear on the Horizontal Face of a Beam Element
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Fig. 6.7  Short segment of beam with 
stress element C’D’D”C” defined.



Concept Application 6.1

A beam is made of three planks, 
nailed together.  Knowing that the 
spacing between nails is 25 mm and 
that the vertical shear in the beam is 
V = 500 N, determine the shear force 
in each nail.

SOLUTION:
Determine the horizontal force per unit 

length or shear flow q on the lower 
surface of the upper plank.

Calculate the corresponding shear 
force in each nail.

Fig. 6.8a  Composite beam made of 
three boards nailed together.
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SOLUTION:
Determine the horizontal force per unit 

length or shear flow q on the lower 
surface of the upper plank.
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Calculate the corresponding shear force 
in each nail for a nail spacing of 25 
mm.
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Fig. 6.8b-c  Cross section with flange area for 
computing shear on nail highlighted.  Cross section 
compound areas for finding entire section moment of 
inertia.



Shearing Stresses in a Beam

The average shearing stress on the horizontal 
face of the element is obtained by dividing the 
shearing force H on the element by the area 
A of the face.
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As long as the width of the beam cross section 
remains small compared to its depth, the shearing 
stress varies slightly along the line D’1D’2.

On the upper and lower surfaces of the beam, 
yx= 0.  It follows that xy= 0 on the upper and
lower edges of the transverse sections.

Fig. 6.7  Short segment of beam with 
smaller stress element C’D’D”C” defined.

Fig. 6.9  Stress element C’D’D”C” 
showing the shear force on a horizontal 
plane.

Fig. 6.11  Beam cross section showing 
that the shearing stress is zero at the 
top and bottom of the beam.

Shearing Stresses xy in Common Types of Beams
For a narrow rectangular beam,
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Fig. 6.13  Geometric 
terms for rectangular 
section used to calculate 
shearing stress.

Fig. 6.14  Shearing 
stress distribution on 
transverse section of 
rectangular beam.

Fig. 6.15  Wide-flange beam. (a) Area for finding first moment of area in flange. 
(b) Area for finding first moment of area in web. (c) Shearing stress distribution.



Further Discussion on Stress Distribution 

Shearing V is constant and equal in magnitude to the 
load P.

Normal strains and normal stresses are unaffected by 
the shearing stresses.
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Consider a narrow rectangular cantilever beam 
subjected to load P at its free end:

From Saint-Venant’s principle, effects of  the load 
application mode are negligible except in immediate 
vicinity of load application points.

Stress/strain deviations for distributed loads are 
negligible for typical beam sections of interest.

Fig. 6.18  Deformation of cantilever 
beam with concentrated load, with a 
parabolic shearing stress distribution.

Fig. 6.19  Cantilever beam with 
multiple loads.

Fig. 6.20  Deformation of cantilever beam 
with distributed load.

Sample Problem 6.2

A timber beam AB of span 10 ft is to 
support the three concentrated loads 
shown.  Knowing that for the grade of 
timber used,

psi120psi1800  allall 

determine the minimum required depth 
d of the beam.

SOLUTION:
Develop shear and bending moment 

diagrams.  Identify the maximums.

Design the beam based on allowable 
normal stress.

Check shearing stress.

Redesign beam based on allowable 
shearing stress, if needed.



SOLUTION:
Develop shear and bending moment 

diagrams.  Identify the maximums.
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Fig. 1  Free-body diagram of beam with shear and 
bending-moment diagrams.
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Design beam based on allowable normal stress.

 
in.26.9

in.5833.0

in.lb1090
psi 1800

2

3

max








d

d

S

M
all

Check shearing stress. 

Since all = 120 psi, the depth d = 9.26 in. is not
acceptable and we must redesign the beam on the 
basis of the requirement that m ≤ 120 psi..
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Fig. 2  Section of beam having 
depth d.



Concept Application 6.4

A square box beam is constructed from 
four planks as shown.  Knowing that the 
spacing between nails is 1.5 in. and the 
beam is subjected to a vertical shear of 
magnitude V = 600 lb, determine the 
shearing force in each nail.

SOLUTION:
Determine the shear force per unit 

length along each edge of the upper 
plank.

Based on the spacing between nails, 
determine the shear force in each 
nail.

Concept Application 6.4 SOLUTION:
Determine the shear force per unit 

length along each edge of the upper 
plank.
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Based on the spacing between nails, 
determine the shear force in each 
nail.
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For the upper plank,
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For the overall beam cross-section,

   
4

4
12
14

12
1

in42.27

in3in5.4



I

Fig. 6.24b-c (b) Geometry for finding first moment of area 
of top plank. (c) Geometry for finding the moment of inertia 
of entire cross section.



Shearing Stresses in Thin-Walled Members
Consider a segment of a wide-flange beam 

subjected to the vertical shear V.

The longitudinal shear force on the element 
is
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The corresponding shear stress is
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in the flanges
in the web

Previously found a similar expression for 
the shearing stress in the web
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Fig. 6.25 (a) Wide-flange beam section with vertical 
shear V. (b) Segment of flange with longitudinal shear H.

Fig. 6.26 Stress element from flange segment.

Shearing Stresses in Thin-Walled Members

The variation of shear flow across the 
section depends only on the variation of 
the first moment.
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For a box beam, q grows smoothly from 
zero at A to a maximum at C and C’ and 
then decreases back to zero at E.

The sense of q in the horizontal portions 
of the section may be deduced from the 
sense in the vertical portions or the 
sense of the shear V.

Fig. 6.30 Shear flow, q, in a box beam section.

Fig. 6.28 Box beam showing shearing stress (a) in flange, 
(b) in web.  Shaded area is used for calculating the first
moment of area.



For a wide-flange beam, the shear flow 
increases symmetrically from zero at A
and A’, reaches a maximum at C and 
then decreases to zero at E and E’. 

The continuity of the variation in q and 
the merging of q from section branches 
suggests an analogy to fluid flow.

Fig. 6.31 Shear flow, q, in a wide-flange beam 
section.

Fig. 6.27 Wide-flange beam sections showing 
shearing stress (a) in flange and (b) in web.  The 
shaded area is that used for calculating the first 
moment of area.
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