ME210 STRENGTH OF MATERIALS

CHAPTER 6
Shearing Stresses in Beams and Thin-Walled
Members

Transverse loading applied to a beam results

Introduction ; : :
in normal and shearing stresses in
transverse sections.

! Distribution of normal and shearing stresses
) satisfies
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Fig. 6.1 All the stresses on elemental

areas (left) sum to give the resultant
shear V and bending moment M. When shearing stresses are exerted on the

vertical faces of an element, equal stresses
must be exerted on the horizontal faces

Longitudinal shearing stresses must exist in
any member subjected to transverse

loading.

Fig. 6.2 Stress element from section of a
transversely loaded beam.




Shear on the Horizontal Face of a Beam Element
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Fig. 6.4 Transversely loaded beam with For eCIUilibrium of beam element
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Fig. 6.5 Short segment of beam with stress Q = IydA
element CDD'C’ defined. A
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Fig. 6.6 Forces exerted on element CCD'C". Ax I

Shear on the Horizontal Face of a Beam Element

Shear flow,
AH TV
q:—:—Q:shear flow
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Fig. 6.7 Short segment of beam with I = J‘ysz
stress element C'D'D"C” defined.

A+ A
=second moment of full cross section

Same result found for lower area

_AH VO
Ax 1
0+0'=0

= first moment with respect
to neutral axis
AH' = -AH
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Concept Application 6.1 ...

Determine the horizontal force per unit
length or shear flow g on the lower
surface of the upper plank.

|« 100 mm +1 ’
.[ 20 mm

Calculate the corresponding shear
T force in each nail.

100 mm
20 mm —| | [~ l

_l 20 mm

Fig. 6.8a Composite beam made of
three boards nailed together.

A beam is made of three planks,
nailed together. Knowing that the
spacing between nails is 25 mm and
that the vertical shear in the beam is
V=500 N, determine the shear force
in each nail.

‘«n 100 m)‘

L| . ’7 SOLUTION:

000m i {uwm ok Determine the horizontal force per unit
A 0 length or shear flow ¢ on the lower
_ 1

surface of the upper plank.

~ ~0020m
(b) (c)

.- VQ _ (500N)(120x10 % m?)

Fig. 6.8b-c Cross section with flange area for

computing shear on nail highlighted. Cross section v 16.20x 10'6m4
compound areas for finding entire section moment of
inertia. = 3704I\y
0=4y m
=(0.020m = 0.100m)(0.060m )

Calculate the corresponding shear force

_ 63

=120x10" "m in each nail for a nail spacing of 25
I=1(0.020m)0.100m)’ mm.

+ 2[%(0.100m)(0.020m)3 F =(0.025m)q = (0.025m)(3704 N/m

+(0.020m x 0.100m)(0.060m )]

=1620x10"°m*
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Fig. 6.7 Short segment of beam with
smaller stress element C'D’'D”C"” defined.

Fig. 6.9 Stress element C'D'D"C”
showing the shear force on a horizontal
plane. )

~ 2N

Fig. 6.11 Beam cross section showing
that the shearing stress is zero at the
top and bottom of the beam.

Shearing Stresses in a Beam

The average shearing stress on the horizontal
face of the element is obtained by dividing the
shearing force AH on the element by the area
A4 of the face.

AH gAx VO Ax
fe =N g T M T iAx
tAx
|49)
It

On the upper and lower surfaces of the beam,
T,= 0. It follows that t,,= 0 on the upper and
lower edges of the transverse sections.

As long as the width of the beam cross section
remains small compared to its depth, the shearing
stress varies slightly along the line D’,D’,.

“* b "| —c

Shearing Stresses z,,in Common Types of Beams

For a narrow rectangular beam,

2
__vo_3v(,
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For American Standard (S-beam)

Fig. 6.13 Geometric
terms for rectangular
section used to calculate
shearing stress.

4;'4»‘
B

A

Fig. 6.14 Shearing
stress distribution on
transverse section of
rectangular beam.

Y

(a)

and wide-flange (W-beam) beams

Vo
Tyve = ——
ave = p,
\ T = 7[/
‘ e Aweb

Fig. 6.15 Wide-flange beam. (a) Area for finding first moment of area in flange.
(b) Area for finding first moment of area in web. (c) Shearing stress distribution.
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Further Discussion on Stress Distribution

y
/F

i

{ Consider a narrow rectangular cantilever beam
{ P e subjected to load P at its free end:

2
3P y Pxy
T"y_zA[ ‘2] W=t

Fig. 6.18 Deformation of cantilever C
beam with concentrated load, with a
parabolic shearing stress distribution.

i B B, Shearing V' is constant and equal in magnitude to the

¥ | load P.
[ - 4 Normal strains and normal stresses are unaffected by
Fig. 6.19 Cantilever beam with the shearing stresses.

multiple loads.
From Saint-Venant’s principle, effects of the load

T application mode are negligible except in immediate
o R e vicinity of load application points.

D,” B

Stress/strain deviations for distributed loads are
Fig. 6.20 Deformation of cantilever beam .. . . .
with distributed load. negligible for typical beam sections of interest.

|
Sample Problem 6.2

SOLUTION:
25kips  lkip  2.5kips Develop shear and bending moment
' ' 3.5in. diagrams. Identify the maximums.
A Y B T
Td Design the beam based on allowable
<2 {'t-><—3ftJ<—3 ﬁ—»«zﬁ»‘ normal stress.

. 10 e ! Check shearing stress.

A timber beam AB of span 10 ft is to
support the three concentrated loads
shown. Knowing that for the grade of
timber used,

Redesign beam based on allowable
shearing stress, if needed.

o, =1800psi 7,1 =120psi

determine the minimum required depth
d of the beam.
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SOLUTION:
| Develop shear and bending moment
diagrams. Identify the maximums.

5 kips

VE F

74

3 kips

(15)

6
() —H 0.5 lxl])

c B
kips 1‘3 kips K
Vinax = 3kips
g s 3 ft —L it max

M ax =7.5kip - ft =90kip - in

M

0.5 kip

(—1.5)

-3

(—6)

—3 kips

6 kip - ft

X

Fig. 1 Free-body diagram of beam with shear and
bending-moment diagrams.

‘4—&*»'

Fig. 2 Section of beam having

depth d.

_ 133
1=Lbd
I 2
S===Lpd
c 6
_1 . 2
—6(3.51n.)d
=(0.5833in.)d>

Design beam based on allowable normal stress.

Mmax

Oall =

~ 90x10°b-in.
(0.5833in.)d?
d =9.26in.

1800 psi

Check shearing stress.

_é Vmax :é% :1388psl

T =
“2 4 2(3.5in.)(9.26in.)
Since t,;; = 120 psi, the depth d = 9.26 in. is not
acceptable and we must redesign the beam on the
basis of the requirement that t,, < 120 psi..

Allowable shear stress controls.

3000 Ib

3v 3
—120 psi =7, = > Y 3 = -
En P = T T 2 B in )@y 4 =10.71in.
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Concept Application 6.4

SOLUTION:
Determine the shear force per unit
length along each edge of the upper

0.75_in.—-‘ ’#31'“*‘ ’*_OL‘W“‘ plank.

0.75 in.
-t . :
Based on the spacing between nails,
determine the shear force in each

p— —_— nail.

4.5 in.

A square box beam is constructed from
four planks as shown. Knowing that the
spacing between nails is 1.5 in. and the
beam is subjected to a vertical shear of
magnitude V= 600 b, determine the
shearing force in each nail.

Concept Application 6.4 SOLUTION: _
Copyright © McGravw-Hill Education. Permission required for reproduction or display. D etermlne the Shear force per unlt
3in length along each edge of the upper
1 075, '“3 in. *‘ plank
4 -
] —_ 4

e * ’ [ | =" (6001b)4.22in%) - op 310
45n 3in -, = . 4 T e
==l "= 1 27.42in in

L— 4.5 in. —»‘ ﬂ =46 15&
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Fig. 6.24b-c (b) Geometry for finding first moment of area .
of top plank. (c) Geometry for finding the moment of inertia = edge force per unit length
of entire cross section.

Based on the spacing between nails,

For the upper plank, . .
determine the shear force in each
0 = A'y =(0.75in.)3in.)1.875in.) nail.
=422in°

F=fl= (46.15&)(1.751@
For the overall beam cross-section, m

1 N ] (e A F =80.81b
1—5(4.5m) —§(31n) _

=27.42in*




Shearing Stresses in Thin-Walled Members

rm Consider a segment of a wide-flange beam
- Za \‘ subjected to the vertical shear V.

2 / &
S y ,\ rT m

The longitudinal shear force on the element
b)

- Vi
- B~ At ="€ A
D] !
Ax . .
"~ @ The corresponding shear stress is
Fig. 6.25 (a) Wide-flange beam section with vertical AH VQ
shear V. (b) Segment of flange with longitudinal shear 4H. ==

Tox =Txz ®

tAx It

y
Previously found a similar expression for
> the shearing stress in the web

Ty = 4Y
Yoo
NOTE: 7,y #0 in the flanges
Fig. 6.26 Stress element from flange segment. 7,0 1In the web

Shearing Stresses in Thin-Walled Members

¢ y

f o m The variation of shear flow across the
: 5N o section depends only on the variation of

NA. A the first moment.
el
] 49
=rt=—">
a I

(a) (b)

Fig. 6.28 Box beam showing shearing stress (a) in flange,
(b) in web. Shaded area is used for calculating the first For a box beam’ q grows SmOOthly from

moment of area. zero at A to a maximum at C and C’ and
then decreases back to zero at E.

The sense of ¢ in the horizontal portions
NA ¥ i of the section may be deduced from the
| ;‘ sense in the vertical portions or the

e | sense of the shear V.

Fig. 6.30 Shear flow, g, in a box beam section.




(a) (b)

Fig. 6.27 Wide-flange beam sections showing
shearing stress (a) in flange and (b) in web. The
shaded area is that used for calculating the first
moment of area.

Fig. 6.31 Shear flow, g, in a wide-flange beam
section.

For a wide-flange beam, the shear flow
increases symmetrically from zero at 4
and A’, reaches a maximum at C and
then decreases to zero at £ and E.

The continuity of the variation in g and
the merging of ¢ from section branches
suggests an analogy to fluid flow.

a)
b)

Examp|e 1

Two 100x20 mm and two 180x20 mm boards are glued together as shown to form a 120x200 mm box

beam. If the beam is subjected to a vertical shear of 3.5 kN, determine the average shearing stress in
the glued joint at,

point A 20mm 100 mm
point B ¥
A
B
180
mm
V=3.5 kN
A
20 1
mm
C D

1 1
I = E(O.lZ)(O.Z)3 —E(O.OS)(0.16)3 = B.27el0 - 5m?

< >—>

™
p:
v -
by N
¥

V=3.5 kN ,L

o

— > « 4—
€ D




Examp|e 1

Two 100x20 mm and two 180x20 mm boards are glued together as shown to form a 120x200 mm box
beam. If the beam is subjected to a vertical shear of 3.5 kN, determine the average shearing stress in
the glued joint at,

a) pointA
b) point B
a) . 2 T is the same ata and @’
>
< N Q=A4y A= (0.12-0.04)(0.02)

y = 0.09
Q = (0.12 — 0.04)(0.02)(0.09) = 1.44x10~*m3

t = 0.02 m but for both cuts t = 2x0.02 = 0.04 m

_VQ  3.5x10°x1.44x10°

- — 239.1 kP
' = T T T527x10-5x0.04 a

Examp|e 1

Two 100x20 mm and two 180x20 mm boards are glued together as shown to form a 120x200 mm box
beam. If the beam is subjected to a vertical shear of 3.5 kN, determine the average shearing stress in
the glued joint at,

a) pointA

b) point B

b)
0.12

002 s _ 4y 4 =(012)(0.02)

‘ ‘ ¥ = 0.09
Q = (0.12)(0.02)(0.09) = 2.16x10 *m3

t = 2x0.02 = 0.04m

Vo 3.5x103x2.16x107°

= — 358.6 kP
It 5.27x10-5x0.04 ¥

Tp




Exam p|e 2
3 kN/m
A simple beam carries a uniform load of 3 kN/m. The
beam’s cross section is made of three pieces joint A
together with screws. .
Specify the necessary minimum spacing of screws if one o
screw is capable of transmitting lateral load of 2 kN | |
| 6m |
Q = 2x50x100x200 + 50x200x225 = 4.25x10° mm?® | I “ I |
Ay 5z Az V2
VQ  4.25x10° @ ? 500
1= T 2367x10°
] 50
‘ I | 50
«—> I -—
50 200 50
[ =2.367x10° mm*

Examp|e 2

V = Ve = 9kN

1]

mid span of the beam

T8 ABA etnh = 1607 1\
9= = gaemr 0 — 162 N jmm 9kN 9 kN
q v
- 9
2 kN 2 kN 2 kN
162 N/mmxd = 2x103 N 9
d d d =123 mm itcanbeincreased for the




Examp|e 3

Determine the largest shear force V that the member can sustain if 7,; = 8 MPa (allowable)

A Y

i, o
BGx1)x05+4+2x(2x1)x2

Y= GxDIzx@zD 167

e RS Y

—bh3 PAT
12

1
I=Ex5x13+(5x1)x(1.1667—0.5)2+2[ﬁx1x23+(1x2)x(2—1.1667)2]
L J

I=2.6391+4.1109 = 6.75 cm* = 6.75 x 10* mm*

Examp|e 3

_ 1lcm
¥y 3cm
e L G e === - - ——— -
3-¥y ¢
1 3 1
_ 3—y
OQmax = 2x[3 = 3) x 1] x | —=) = 3.3611 cm?
—_—
A v’
VQ V x (3.3611 x 103 mm?®)

_ _ve _ =8N 2
Tmax = Tall =17 = (675 % 10* mm*) x (2 x 10 mm) fmm

V =3213 N




