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CHAPTER 2
Stress and Strain – Axial Loading

Stress & Strain: Axial Loading

Suitability of a structure or machine may depend on the deformations in the 
structure as well as the stresses induced under loading.  Statics analyses 
alone are not sufficient.

Considering structures as deformable allows determination of member 
forces and reactions which are statically indeterminate.

Determination of the stress distribution within a member also requires 
consideration of deformations in the member.

Chapter 2 is concerned with deformation of a structural member under axial 
loading.  Later chapters will deal with torsional and pure bending loads.
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Fig. 2.1 Undeformed 
and deformed axially 
loaded rod.

L

A

P

A

P








2

2

Fig. 2.3 Twice the load is 
required to obtain the same 
deformation  when the 
cross-sectional area is 
doubled.
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Fig. 2.4 The deformation is 
doubled when the rod length 
is doubled while keeping the 
load P and cross-sectional 
area A.

Stress-Strain Test

Photo 2.2 Universal test machine used to test tensile specimens.

Photo 2.3 Elongated tensile test specimen having 

load P and deformed length L > L0.



Stress-Strain Diagram:  Ductile Materials

Photo 2.4 Ductile material tested specimens: 
(a) with cross-section necking, (b) ruptured.

Fig. 2.6 Stress-strain diagrams of two typical ductile materials.

Stress-Strain Diagram:  Brittle Materials 

Fig 2.7 Stress-strain diagram for a typical brittle material.Photo 2.5 Ruptured brittle materials specimen.



Hooke’s Law: Modulus of Elasticity

Below the yield stress

Elasticity of Modulus 
or Modulus Youngs


E

E

Strength is affected by alloying, heat 
treating, and manufacturing process 
but stiffness (Modulus of Elasticity) 
is not.

Fig 2.11 Stress-strain diagrams for iron and 
different grades of steel.

Elastic vs. Plastic Behavior

If the strain disappears when the 
stress is removed, the material is 
said to behave elastically.  

When the strain does not return 
to zero after the stress is 
removed, plastic deformation 
of the material has taken place.

The largest stress for which this 
occurs is called the elastic limit.

Fig. 2.13 Stress-strain response of ductile 
material load beyond yield and unloaded.



Fatigue
Fatigue properties are shown on -

N diagrams.

When the stress is reduced below 
the endurance limit, fatigue 
failures do not occur for any 
number of cycles.

A member may fail due to fatigue at 
stress levels significantly below 
the ultimate strength if subjected 
to many loading cycles.

Fig. 2.16 Typical -n curves.

Deformations Under Axial Loading
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Fig. 2.17 Undeformed and 
deformed axially-loaded rod.



Concept Application 2.1

Determine the deformation of 
the steel rod shown under the 
given loads.

psi1029 6E

SOLUTION:

Divide the rod into components at the 
load application points.

Apply a free-body analysis on each 
component to determine the 
internal force

Evaluate the total of the component 
deflections.

SOLUTION:
Divide the rod into three 

components:
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Evaluate total deflection,
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Sample Problem 2.1

The rigid bar BDE is supported by two 
links AB and CD.  
Link AB is made of aluminum (E = 70 
GPa) and has a cross-sectional area of 500 
mm2.  Link CD is made of steel (E = 200 
GPa) and has a cross-sectional area of (600 
mm2).  
For the 30-kN force shown, determine the 
deflection (a) of B, (b) of D, and (c) of E.

SOLUTION:
Apply a free-body analysis to the bar 

BDE to find the forces exerted by 
links AB and DC.

Evaluate the deformation of links AB
and DC or the displacements of B
and D.

Work out the geometry to find the 
deflection at E given the deflections 
at B and D.

Free body:  Bar BDE
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Displacement of D:
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Static Indeterminate Problems
Structures for which internal forces and reactions 

cannot be determined from statics alone are said 
to be statically indeterminate.

0 RL 

Deformations due to actual loads and redundant 
reactions are determined separately and then 
added.

Redundant reactions are replaced with unknown 
loads which along with the other loads must 
produce compatible deformations.

A structure will be statically indeterminate 
whenever it is held by more supports than are 
required to maintain its equilibrium.  

Fig. 2.23



Concept Application 2.4 Determine the reactions at A and B for the steel
bar and loading shown, assuming a close fit at 
both supports before the loads are applied.

Solve for the reaction at RA due to applied loads 
and the reaction found at RB.

Require that the displacements due to the loads 
and due to the redundant reaction be 
compatible, i.e., require that their sum be zero.

Solve for the displacement at B due to the 
redundant reaction at RB.

SOLUTION:
Consider the reaction at B as redundant, release 

the bar from that support, and solve for the 
displacement at B due to the applied loads.

SOLUTION:

Solve for the displacement at B due to the applied loads 
with the redundant constraint released, 
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Require that the displacements due to the loads and due to the 
redundant reaction be compatible,
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Find the reaction at A due to the loads and the reaction at B

kN323

kN577kN600kN 3000



 

A

Ay

R

RF

kN577

kN323





B

A

R

R

Problems Involving Temperature Change
A temperature change results in a change in length or 

thermal strain.  There is no stress associated with the 
thermal strain unless the elongation is restrained by 
the supports.  

 

expansion  thermaloft coefficien 






AE

PL
LT

PT

Treat the additional support as redundant and apply the 
principle of superposition.
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The thermal deformation and the deformation from the 
redundant support must be compatible.
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Fig. 2.26 (partial)

Fig. 2.27 Superposition method to find force at point B of restrained rod AB
undergoing thermal expansion. (a) Initial rod length; (b) thermally expanded rod 
length; (c) force P pushes point B back to zero deformation.



Poisson’s Ratio For a slender bar subjected to axial loading:
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The elongation in the x-direction is accompanied 
by a contraction in the other directions.  
Assuming that the material is homogeneous
and isotropic (no directional dependence),

0 zy 

Poisson’s ratio is defined as
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Fig. 2.29 A bar in uniaxial tension and a 
representative stress element.

Fig. 2.30 Materials undergo transverse 
contraction when elongated under axial load.

Multiaxial Loading: Generalized Hooke’s Law
For an element subjected to multi-axial loading, 

the normal strain components resulting from the 
stress components may be determined from the 
principle of superposition.  This requires:
1) Each effect is linearly related to the load that
produces it.
2) The deformation resulting form any given
load is small and does not affect the conditions
of application of the other loads.
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With these restrictions:

Fig. 2.33 Deformation of unit cube under 
multiaxial loading: (a) unloaded; (b) deformed.



Dilatation: Bulk Modulus
Relative to the unstressed state, the change in volume is
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Fig. 2.33 Deformation of unit cube under 
multiaxial loading: (a) unloaded; (b) deformed.

Shearing Strain

A cubic element subjected to only shearing stress will 
deform into a rhomboid.  The corresponding 
shearing strain is quantified in terms of the change in 
angle between the sides,

 xyxy f  

A plot of shearing stress vs. shearing strain is similar 
to the previous plots of normal stress vs. normal 
strain except that the strength values are 
approximately half.  For values of shearing strain 
that do not exceed the proportional limit, 

zxzxyzyzxyxy GGG  

where G is the modulus of rigidity or shear modulus.

Fig. 2.36  Unit cubic element subjected to 
shearing stress.

Fig. 2.37 Deformation of unit cubic element 
due to shearing stress.



Concept Application 2.10

A rectangular block of material with modulus of 
rigidity G = 90 ksi is bonded to two rigid 
horizontal plates.  The lower plate is fixed, while 
the upper plate is subjected to a horizontal force P. 
Knowing that the upper plate moves through 0.04 
in. under the action of the force, determine (a) the 
average shearing strain in the material, and (b) the 
force P exerted on the plate.

SOLUTION:
Determine the average angular 

deformation or shearing strain of 
the block.

Use the definition of shearing stress to 
find the force P.

Apply Hooke’s law for shearing stress 
and strain to find the corresponding 
shearing stress.

Fig. 2.41(a) Rectangular block loaded in shear.

Determine the average angular deformation or 
shearing strain of the block.
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Apply Hooke’s law for shearing stress and 
strain to find the corresponding shearing 
stress.
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Use the definition of shearing stress to find 
the force P.
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Fig. 2.41(b) Deformed block showing 
the shear strain.



Relation Between E, ν, and G

An axially loaded slender bar will elongate 
in the x direction and contract in both of 
the transverse y and z directions.  

  1
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Components of normal and shearing strain are 
related,

or 

If the cubic element is oriented as in Figure 
2.42(b), it will deform into a rhombus. 
Axial load also results in a shearing strain.

An initially cubic element oriented as in 
Figure 2.42(a) will deform into a 
rectangular parallelepiped.  The axial load 
produces a normal strain.

Fig. 2.42 Representations of strain in an axially loaded 
bar: (a) cubicstrain element faces aligned with coordinate 
axes; (b) cubicstrain element faces rotated 45º about z-
axis.  
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Composite Materials Fiber-reinforced composite materials are fabricated by
embedding fibers of a strong, still material into a 
weaker, softer material called a matrix.
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Normal stresses and strains are related by Hooke’s Law 
but with directionally dependent moduli of elasticity, 
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Transverse contractions are related by directionally 
dependent values of Poisson’s ratio, e.g.,

The three components of strain x, y, and z for
orthotropic materials can be expressed in terms of 
normal stress only and do not depend upon any 
shearing stresses.

Fig. 2.44 Orthotropic Fiber-
reinforced composite material 
under uniaxial tensile load.



Sample Problem 2.5
A circle of diameter d = 9 in. is scribed on an 
unstressed aluminum plate of thickness t = 3/4 
in.  Forces acting in the plane of the plate later 
cause normal stresses x = 12 ksi and z = 20
ksi.  
For E = 10x106 psi and  = 1/3, determine the 
change in: 

a) the length of diameter AB,
b) the length of diameter CD,
c) the thickness of the plate, and
d) the volume of the plate.

SOLUTION:
Apply the generalized Hooke’s Law to 

find the three components of normal 
strain. 
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Evaluate the deformation components.
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Find the change in volume
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Saint-Venant’s Principle Loads transmitted through rigid plates 
result in uniform distribution of 
stress and strain.

Saint-Venant’s Principle:
Stress distribution may be assumed 
independent of the mode of load 
application except in the immediate 
vicinity of load application points.

Stress and strain distributions become 
uniform at a relatively short distance 
from the load application points.

Concentrated loads result in large 
stresses in the vicinity of the load 
application point.

Fig. 2.47 Axial load applied by 
rigid plates to rubber model.

Fig. 2.49 Stress distributions in a plate under concentrated axial loads.

Fig. 2.48 Concentrated 
axial load applied to rubber 
model.

Stress Concentration: Hole

Discontinuities of cross section may result in 
high localized or concentrated stresses.ave

max


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Stress concentration factor

Fig. 2.50 Stress distribution near circular hole 
in flat bar under axial loading. Fig. 2.52(a) Stress concentration 

factors for flat bars under axial loading.



Stress Concentration: Fillet

Fig. 2.51 Stress distribution near 
fillets in flat bar under axial loading.

Fig. 2.52(b) Stress concentration 
factors for flat bars under axial loading.

Concept Application 2.12

Determine the largest axial load P
that can be safely supported by a 
flat steel bar consisting of two 
portions, both 10 mm thick, and 
respectively 40 and 60 mm wide, 
connected by fillets of radius r = 8 
mm.  Assume an allowable normal
stress of 165 MPa.

SOLUTION:
Determine the geometric ratios and find 

the stress concentration factor from 
Figure 2.52.

Apply the definition of normal stress to 
find the allowable load.

Find the allowable average normal stress 
using the material allowable normal 
stress and the stress concentration 
factor.



Determine the geometric ratios and find 
the stress concentration factor from 
Figure 2.52.
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Find the allowable average normal 
stress using the material allowable 
normal stress and the stress 
concentration factor.
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Apply the definition of normal stress to 
find the allowable load.
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Fig. 2.52(b) Stress concentration 
factors for flat bars under axial loading.




