ME210 STRENGTH OF MATERIALS

Chapter 04 - Recitation 3

Example 1

An eccentric force P is applied as shown to a steel bar of 25 90-mm cross section. The strains at A and B have been measured and found to be

$$\varepsilon_A = +350 \,\mu$$
 $\varepsilon_B = -70 \,\mu$

Knowing that E=200GPa, determine

- (a) The distance d
- (b) The magnitude of the force P
- We need to find moment of inertia
 I of the cross section

h
$$b = 25mm$$
 $h = 15 + 45 + 30 = 90 mm$ $c = \frac{1}{2}h = 45 mm = 0.045 m$ $I = \frac{1}{12}bh^3 = \frac{1}{12}(25)(90)^3 = 1.51875 \times 10^6 mm^4$ $= 1.51875 \times 10^{-6} m^4$

$$\sigma_A = \frac{P}{A} - \frac{My_A}{I}$$
 (1) $\sigma_B = \frac{P}{A} - \frac{My_B}{I}$ (2)

• The distances of strain gages to the center of cross section:

$$y_A = 60 - 45 = 15 mm = 0.015 m$$

 $y_B = 15 - 45 = -30 mm = -0.030 m$

Stresses from strain gages at A and B: $\sigma_A = E \varepsilon_A = (200 \ x \ 10^9)(350 \ x \ 10^{-6}) = 70 \ x \ 10^6 \ Pa$ $\sigma_B = E \varepsilon_B = (200 \ x \ 10^9)(-70 \ x \ 10^{-6}) = -14 \ x \ 10^6 \ Pa$

$$A = bh = (25)(90) = 2.25 \times 10^3 \text{ mm}^2 = 2.25 \times 10^{-3} \text{m}^2$$

Example 1

$$M = -\frac{I(\sigma_A - \sigma_B)}{y_A - y_B} + M$$
 convention

$$\sigma_A = \frac{P}{A} - \frac{My_A}{I} \quad (1) \quad \sigma_B = \frac{P}{A} - \frac{My_B}{I} \quad (2)$$

$$\sigma_A = 70 \times 10^6 Pa$$
 $A = 2.25 \times 10^{-3} m^2$
 $\sigma_B = -14 \times 10^6 Pa$ $y_A = 0.015 m$
 $I = 1.51875 \times 10^{-6} m^4$ $y_B = -0.030 m$

· Substracting

$$\sigma_A - \sigma_B = -\frac{M(y_A - y_B)}{I}$$

$$M = -\frac{I(\sigma_A - \sigma_B)}{y_A - y_B}$$

$$M = -\frac{1.51875 \times 10^{-6} (84 \times 10^{6})}{0.045}$$

$$M = -2835 \ Nm$$

$$\sigma_A = \frac{P}{A} - \frac{My_A}{I}$$
 (1) $\sigma_B = \frac{P}{A} - \frac{My_B}{I}$ (2)

$$\sigma_A = 70 \times 10^6 Pa$$
 $A = 2.25 \times 10^{-3} m^2$
 $\sigma_B = -14 \times 10^6 Pa$ $y_A = 0.015 m$
 $I = 1.51875 \times 10^{-6} m^4$ $y_B = -0.030 m$

 Multiplying (2) by y_A and (1) by y_B and subtracting:

$$y_A \sigma_B - y_B \sigma_A = (y_A - y_B) \frac{P}{A}$$

$$P = \frac{A(y_A \sigma_B - y_B \sigma_A)}{y_A - y_B} = \frac{(2.25 \times 10^{-3})[(0.015)(-14 \times 10^6) - (-0.030)(70 \times 10^6)]}{0.045}$$

$$P = 94.5 \times 10^3 N$$

M = -Pc

$$d = -\frac{M}{P} = -\frac{-2835}{94.5 \times 10^3} = 0.030 \, m$$

Example 1

$$\varepsilon_A = +350 \,\mu$$
 $\varepsilon_B = -70 \,\mu$

- Alternative way using absolute values without signs
- · Assume directions of P and M

- Think about each term separately, and decide if they are tension (T) or compression (C)
- Assume tension is '+', compression is '-'

$$|\sigma_{A}| = \frac{P}{A} \frac{M|y_{A}|}{I}$$
 (1)
$$|\sigma_{B}| = \frac{P}{A} \frac{M|y_{B}|}{I}$$
 (2) • Solve
$$P = 94500 N \text{ (T)}$$
 (T) (T) (C) (T) (C)
$$+ |\sigma_{A}| = + \frac{P}{A} + \frac{M|y_{A}|}{I}$$

$$-|\sigma_{B}| = + \frac{P}{A} - \frac{M|y_{B}|}{I}$$

$$M = 2835 Nm + \frac{P}{A}$$

$$M = Pd$$

$$-14x10^{6} = + \frac{P}{2.25x10^{-3}} + \frac{M(0.015)}{1.51875x10^{-6}} -14x10^{6} = + \frac{P}{2.25x10^{-3}} - \frac{M(0.030)}{1.51875x10^{-6}}$$

If the beam is subjected to an internal moment of M=100 kN.m, determine the bending stress developed at points A, B and C. Sketch the bending stress distribution on the cross section.)

$$\sigma = -\frac{My}{I}$$

First, we need to find centroid and neutral axis (n.a.). y and I are measured using centroid

	$A[mm^2]$	\overline{y} [mm]	$A\overline{y}$ [mm ³]
1	(30)(300) = 9000	30+300/2=180	1620000
2	(300)(30) = 9000	30/2=15	135000
	18000		1755000

$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{1755000}{18000} = 97.5 \ mm = 0.0975 \ m$$

Location of centroid from bottom edge

Example 2

If the beam is subjected to an internal moment of M=100 kN.m, determine the bending stress developed at points A, B and C. Sketch the bending stress distribution on the cross section.)

$$\sigma = -\frac{My}{I}$$

Second, we need to find moment of inertia I for this cross section about centroid.

$$I = I_1 + I_2$$
 $- \frac{1}{12}bh^3$

$$I_1 = \frac{1}{12}b_1h_1^3 + A_1d_1^2$$
 $I_2 = \frac{1}{12}b_2h_2^3 + A_2d_2^2$

$$I_1 = \frac{1}{12}(30)(300)^3 + (9000)(30 + 150 - 97.5)^2 = 128756250 \, mm^4$$

$$I_2 = \frac{1}{12}(300)(30)^3 + (9000)(97.5 - 15)^2 = 61931250 \ mm^4$$

$$I = I_1 + I_2 = 190687500 \, mm^4 = 0.1907x10^{-3}m^4$$

If the beam is subjected to an internal moment of M=100 kN.m, determine the bending stress developed at points A, B and C. Sketch the bending stress distribution on the cross section.)

$$\sigma = -\frac{My}{I}$$

+M convention

y: Distance between centoid and given point

$$y_A = 300 + 30 - 97.5 = 232.5 \, mm$$

$$y_B = -97.5 \text{ mm}$$
 $y_C = -(97.5 - 30) = -67.5 \text{ mm}$
 $M = +100x10^3 \text{N.m}$

$$\overline{Y} = 97.5 \ mm$$

$$\sigma_A = -\frac{My_A}{I} = -\frac{100(10^3)(0.2325)}{0.1907(10^{-3})} = -122 = 122 \text{ MPa}(C)$$

$$\sigma_B = -\frac{My_B}{I} = -\frac{100(10^3)(-0.0975)}{0.1907(10^{-3})} = +51.1 = 51.1 MPa (T)$$

$$\sigma_B = -\frac{My_B}{I} = -\frac{100(10^3)(-0.0975)}{0.1907(10^{-3})} = +51.1 = 51.1 \, MPa \, (T)$$

$$\sigma_C = -\frac{My_C}{I} = -\frac{100(10^3)(-0.0675)}{0.1907(10^{-3})} = +35.4 = 35.4 \, MPa \, (T)$$

Example 2

If the beam is subjected to an internal moment of M=100 kN.m, determine the bending stress developed at points A, B and C. Sketch the bending stress distribution on the cross section.)

 $\sigma_A = 122 MPa (C)$

Zero at neutral axis Changes linearly above and below n.a.

 $\sigma_{C} = 35.4 MPa (T)$

 $\sigma_B = 51.1 MPa(T)$