ME201 STATICS

CHAPTER 5
Distributed Forces: Centroids and Centers of Gravity

Contents

<u>Introduction</u>

Center of Gravity of a 2D Body

<u>Centroids and First Moments of Areas and</u>

Lines

Sample Problem 5.4

Centroids of Common Shapes of Areas

Centroids of Common Shapes of Lines

Composite Plates and Areas

Sample Problem 5.1

Determination of Centroids by Integration

Theorems of Pappus-Guldinus

Sample Problem 5.7

Distributed Loads on Beams

Sample Problem 5.9

Center of Gravity of a 3D Body:

Centroid of a Volume

Centroids of Common 3D Shapes

Composite 3D Bodies

Sample Problem 5.12

Application

There are many examples in engineering analysis of distributed loads. It is convenient in some cases to represent such loads as a concentrated force located at the *centroid* of the distributed load.

Introduction

- The earth exerts a gravitational force on each of the particles forming a body – consider how your weight is distributed throughout your body. These forces can be replaced by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body.
- The centroid of an area is analogous to the center of gravity of a body; it is the "center of area." The concept of the first moment of an area is used to locate the centroid.
- Determination of the area of a surface of revolution and the volume of a body of revolution are accomplished with the Theorems of Pappus-Guldinus.

Center of Gravity of a 2D Body

- Center of gravity of a plate
- Center of gravity of a wire

$$\begin{split} \sum M_y & \quad \overline{x}W = \sum x \Delta W \\ & = \int x \, dW \\ \sum M_y & \quad \overline{y}W = \sum y \Delta W \\ & = \int y \, dW \end{split}$$

$$\Sigma F_z$$
: $W = \Delta W_1 + \Delta W_2 + \cdots + \Delta W_n$

Centroids and First Moments of Areas and Lines

• Centroid of an area

$$\overline{x}W = \int x \, dW$$

$$\overline{x}(\gamma At) = \int x (\gamma t) dA$$

$$\overline{x}A = \int x \, dA = Q_y$$
= first moment wit h respect to y

$$\overline{y}A = \int y \, dA = Q_x$$
= first moment wit h respect to x

 $\overline{x}W = \int x \, dW$ $\overline{x}(\gamma La) = \int x (\gamma a) dL$ $\overline{x}L = \int x \, dL$ $\overline{y}L = \int y \, dL$

 $\gamma \rightarrow$ Weight per unit volume

Determination of Centroids by Integration

$$\overline{x}A = \int x dA = \iint x dx dy = \int \overline{x}_{el} dA$$

 $\overline{y}A = \int y dA = \iint y dx dy = \int \overline{y}_{el} dA$

 Double integration to find the first moment may be avoided by defining dA as a thin rectangle or strip.

$$\overline{x}A = \int \overline{x}_{el} dA$$

$$= \int x (ydx)$$

$$\overline{y}A = \int \overline{y}_{el} dA$$

$$= \int \frac{y}{2} (ydx)$$

$$\bar{x}A = \int \bar{x}_{el} dA$$

$$= \int \frac{a+x}{2} [(a-x)dx]$$

$$\bar{y}A = \int \bar{y}_{el} dA$$

$$= \int y [(a-x)dx]$$

$$\bar{x}A = \int \bar{x}_{el} dA$$

$$= \int \frac{2r}{3} \cos \theta \left(\frac{1}{2} r^2 d\theta \right)$$

$$\bar{y}A = \int \bar{y}_{el} dA$$

$$= \int \frac{2r}{3} \sin \theta \left(\frac{1}{2} r^2 d\theta \right)$$

Sample Problem

Determine by direct integration the location of the centroid of a parabolic spandrel.

- Determine the constant k.
- Evaluate the total area.
- Using either vertical or horizontal strips, perform a single integration to find the first moments.
- Evaluate the centroid coordinates.

SOLUTION:

• Determine the constant k.

$$y = k x^{2}$$

$$b = k a^{2} \implies k = \frac{b}{a^{2}}$$

$$y = \frac{b}{a^{2}} x^{2} \quad or \quad x = \frac{a}{b^{1/2}} y^{1/2}$$

• Evaluate the total area.

$$A = \int dA$$

$$= \int y \, dx = \int_0^a \frac{b}{a^2} x^2 dx = \left[\frac{b}{a^2} \frac{x^3}{3} \right]_0^a$$

$$= \frac{ab}{a}$$

Sample Problem

• Using vertical strips, perform a single integration to find the first moments.

$$Q_{y} = \int \overline{x}_{el} dA = \int xy dx = \int_{0}^{a} x \left(\frac{b}{a^{2}} x^{2}\right) dx$$

$$= \left[\frac{b}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a} = \frac{a^{2}b}{4}$$

$$Q_{x} = \int \overline{y}_{el} dA = \int \frac{y}{2} y dx = \int_{0}^{a} \frac{1}{2} \left(\frac{b}{a^{2}} x^{2}\right)^{2} dx$$

$$= \left[\frac{b^{2}}{2a^{4}} \frac{x^{5}}{5}\right]_{0}^{a} = \frac{ab^{2}}{10}$$

 Or, using horizontal strips, perform a single integration to find the first moments. Try calculating Q_y or Q_x by this method, and confirm that you get the same value as before.

$$Q_{y} = \int \overline{x}_{el} dA = \int \frac{a+x}{2} (a-x) dy = \int_{0}^{b} \frac{a^{2}-x^{2}}{2} dy$$

$$= \frac{1}{2} \int_{0}^{b} \left(a^{2} - \frac{a^{2}}{b} y \right) dy = \frac{a^{2}b}{4}$$

$$Q_{x} = \int \overline{y}_{el} dA = \int y (a-x) dy = \int y \left(a - \frac{a}{b^{1/2}} y^{1/2} \right) dy$$

$$= \int_{0}^{b} \left(ay - \frac{a}{b^{1/2}} y^{3/2} \right) dy = \frac{ab^{2}}{10}$$

Sample Problem

• Evaluate the centroid coordinates.

$$\overline{x}A = Q_y$$

$$\overline{x}\frac{ab}{3} = \frac{a^2b}{4}$$

$$\overline{x} = \frac{3}{4}$$

$$\overline{y}A = Q_x$$

$$\overline{y}\frac{ab}{3} = \frac{ab^2}{10}$$

$$\overline{y} = \frac{3}{10}$$

Usually, the choice between using a vertical or horizontal strip is equally good, but in some cases, one choice is much better than the other. For example, for the area shown below, is a vertical or horizontal strip a better choice, and why?

First Moments of Areas and Lines

- An area is **symmetric with respect to an axis** *BB*' if **for every point** *P* **there exists a point** *P*' **such that** *PP*' **is perpendicular to** *BB*' and is divided into two equal parts by *BB*'.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element dA at (x,y) there exists an area dA' of equal area at (-x,-y).
- The centroid of the area coincides with the center of symmetry.

Centroids of Common Shapes of Areas

Shape	Mark in the last of the second of the second	x	ÿ	Area
Triangular area		/	<u>h</u> 3	<u>bh</u>
Quarter-circular area	c c	4r 3r	4r 3e	$\frac{\pi r^2}{4}$
Semicircular area		0	$\frac{4r}{3\pi}$	<u>πr²</u> 2
Quarter-elliptical area	G	4a 3ar	4 <u>b</u> 3л	<u>παb</u>
Semielliptical area		0	$\frac{4b}{3\pi}$	<u>жав</u>
Semiparabolic area	- a -	3a 8	3h 5	2ah 3
Parabolic area		0	$\frac{3h}{5}$	4ah 3
Parabolic spandrel		3a 4	3h 10	<u>ah</u> 3
General spandrel	$y = kx^n$ h	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector	o la c	$\frac{2r\sin\alpha}{3\alpha}$	0	αr ²

Centroids of Common Shapes of Lines

Shape	0	\overline{x}	\overline{y}	Length
Quarter-circular arc		$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc		0	$\frac{2r}{\pi}$	πr
Arc of circle		$\frac{r \sin \alpha}{\alpha}$	0	2ar

Composite Plates and Areas

• Composite plates

$$\overline{X} \sum W = \sum \overline{x} W$$

$$\overline{Y} \sum W = \sum \overline{y} W$$

• Composite area

$$\overline{X} \sum A = \sum \overline{x} A$$

$$\overline{Y} \sum A = \sum \overline{y} A$$

Sample Problem

For the plane area shown, determine the first moments with respect to the *x* and *y* axes and the location of the centroid.

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.

Component	A, mm ²	⊼, mm	ӯ, mm	$\bar{x}A$, mm ³	<i>ȳA</i> , mm³
Rectangle Triangle Semicircle Circle	$\begin{array}{l} (120)(80) = 9.6 \times 10^3 \\ \frac{1}{2}(120)(60) = 3.6 \times 10^3 \\ \frac{1}{2}\pi(60)^2 = 5.655 \times 10^3 \\ -\pi(40)^2 = -5.027 \times 10^3 \end{array}$	60 40 60 60	40 -20 105.46 80	$+576 \times 10^{3} +144 \times 10^{3} +339.3 \times 10^{3} -301.6 \times 10^{3}$	$+384 \times 10^{3} -72 \times 10^{3} +596.4 \times 10^{3} -402.2 \times 10^{3}$
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \bar{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

• Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

$$Q_x = +506.2 \times 10^3 \text{ mm}^3$$

 $Q_y = +757.7 \times 10^3 \text{ mm}^3$

Sample Problem

• Compute the coordinates of the area centroid by dividing the first moments by the total area.

$$\overline{X} = \frac{\sum \overline{x}A}{\sum A} = \frac{+757.7 \times 10^3 \text{ mm}^3}{13.828 \times 10^3 \text{ mm}^2}$$

$$\overline{X} = 54.8 \text{ mm}$$

$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{+506.2 \times 10^3 \text{ mm}^3}{13.828 \times 10^3 \text{ mm}^2}$$

$$\overline{Y} = 36.6 \text{ mm}$$

Theorems of Pappus-Guldinus

• Surface of revolution is generated by rotating a plane curve about a fixed axis.

 Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$A=2\pi\,\overline{y}L$$

Theorems of Pappus-Guldinus

• Body of revolution is generated by rotating a plane area about a fixed axis.

 Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$V = 2\pi \, \overline{y} A$$

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is ρ =7.85×10³ kg/m³ determine the mass and weight of the rim.

SOLUTION:

- Apply the theorem of Pappus-Guldinus to evaluate the volumes of revolution of the pulley, which we will form as a large rectangle with an inner rectangular cutout.
- Multiply by density and acceleration to get the mass and weight.

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and weight.

50 mm I C _I	-	30 mm II •	m
3	— 75 mm 		365 mm

	Area, mm²	<u></u> ȳ, mm	Distance Traveled by C, mm	Volume, mm ³
I II	+5000 -1800	375 365	$2\pi(375) = 2356$ $2\pi(365) = 2293$	$(5000)(2356) = 11.78 \times 10^6$ $(-1800)(2293) = -4.13 \times 10^6$
	g ,			Volume of rim = 7.65×10^6

$$m = \rho V = (7.85 \times 10^3 \text{ kg/m}^3)(7.65 \times 10^6 \text{ mm}^3)(10^{-9} \text{ m}^3 / \text{mm}^3)$$

$$m = 60.0 \text{ kg}$$

$$W = mg = (60.0 \text{ kg})(9.81 \text{ m/s}^2)$$

$$W = 589 \text{ N}$$

Distributed Loads on Beams

$$W = \int_{0}^{L} w dx = \int dA = A$$

• A distributed load is represented by plotting the load per unit length, w (N/m). The total load is equal to the area under the load curve.

$$(OP)W = \int x dW$$
$$(OP)A = \int_{0}^{L} x dA = \overline{x}A$$

A distributed load can be replace by a <u>concentrated</u> <u>load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid</u>.

Sample Problem

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

- The magnitude of the concentrated load is equal to the total load or the area under the curve.
- The line of action of the concentrated load passes through the centroid of the area under the curve.
- Determine the support reactions by (a) drawing the free body diagram for the beam and (b) applying the conditions of equilibrium.

SOLUTION:

• The magnitude of the concentrated load is equal to the total load or the area under the curve.

$$F = 18.0 \text{ kN}$$

• The line of action of the concentrated load passes through the centroid of the area under the curve.

$$\overline{X} = \frac{63 \text{ kN} \cdot \text{m}}{18 \text{ kN}}$$

$$\overline{X} = 3.5 \text{ m}$$

Component	A, kN	<i>x</i> , m	<i>xA</i> , kN⋅m
Triangle I	4.5	2	9
Triangle II	13.5	4	54
	$\Sigma A = 18.0$		$\Sigma \overline{x} A = 63$

• Determine the support reactions by applying the equilibrium conditions. For example, successively sum the moments at the two supports:

$$\sum M_A = 0$$
: B_y (6 m) - (18 kN)(3.5 m) = 0

$$B_{y} = 10.5 \text{ kN}$$

$$\sum M_B = 0$$
: $-A_y$ (6 m)+ (18 kN)(6 m - 3.5 m)= 0

• And by summing forces in the x-direction:

$$\sum F_x = 0: \quad B_x = 0$$

Center of Gravity of a 3D Body: Centroid of a Volume

• Center of gravity G

$$-W\vec{j} = \sum \left(-\Delta W\vec{j}\right)$$

$$\begin{split} \vec{r}_G \times \left(-W \, \vec{j} \, \right) &= \sum \left[\vec{r} \times \left(-\Delta W \, \vec{j} \, \right) \right] \\ \vec{r}_G W \times \left(-\vec{j} \, \right) &= \left(\sum \vec{r} \Delta W \, \right) \times \left(-\vec{j} \, \right) \end{split}$$

$$W = \int dW \qquad \vec{r}_G W = \int \vec{r} \, dW$$

- Results are independent of body orientation,
 - $\overline{x}W = \int x dW \quad \overline{y}W = \int y dW \quad \overline{z}W = \int z dW$

• For homogeneous bodies,
$$W = \gamma V$$
 and $dW = \gamma dV$

$$\overline{x}V = \int x dV \hspace{0.5cm} \overline{y}V = \int y dV \hspace{0.5cm} \overline{z}V = \int z dV$$

Centroids of Common 3D Shapes

	,						
Shape		\overline{x}	Volume		h		
Hemisphere		3a 8	$\frac{2}{3}\pi a^3$	Cone	- X -	$\frac{h}{4}$	$\frac{1}{3} \pi a$
Semiellipsoid of revolution	→ h →	3h 8	2/ ₃ πα ² h	Pyramid	b a TX	$\frac{h}{4}$	$\frac{1}{3}$ abl
Paraboloid of revolution	h → T → T → T → T → T → T → T → T → T →	<u>h</u> 3	$rac{1}{2}$ $\pi a^2 h$				

Composite 3D Bodies

• Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

$$\overline{X} \sum W = \sum \overline{x} W \quad \overline{Y} \sum W = \sum \overline{y} W \quad \overline{Z} \sum W = \sum \overline{z} W$$

• For homogeneous bodies,

$$\overline{X} \sum V = \sum \overline{x} V \quad \overline{Y} \sum V = \sum \overline{y} V \quad \overline{Z} \sum V = \sum \overline{z} V$$

Sample Problem

Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in.

SOLUTION:

• Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders.

	V, in ³	\overline{x} , in.	ӯ, in.	₹, in.	x̄V, in⁴	ȳV, in⁴	₹ <i>V</i> , in⁴
I II III IV	$ \begin{aligned} &(4.5)(2)(0.5) = 4.5 \\ &\frac{1}{4}\pi(2)^2(0.5) = 1.571 \\ &-\pi(0.5)^2(0.5) = -0.3927 \\ &-\pi(0.5)^2(0.5) = -0.3927 \end{aligned} $	0.25 1.3488 0.25 0.25	-1 -0.8488 -1 -1	2.25 0.25 3.5 1.5	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	10.125 0.393 -1.374 -0.589
	$\Sigma V = 5.286$				$\Sigma \overline{x}V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z}V = 8.555$

$$\overline{X} = \sum \overline{x} V / \sum V = (3.08 \text{ in}^4) / (5.286 \text{ in}^3)$$

 $\bar{X} = 0.577 \text{ in.}$

$$\overline{Y} = \sum \overline{y}V / \sum V = (-5.047 \text{ in}^4) / (5.286 \text{ in}^3)$$

 $\overline{\overline{Y}} = 0.577$ in.

$$\overline{Z} = \sum \overline{z} V / \sum V = (1.618 \text{ in}^4) / (5.286 \text{ in}^3)$$

 $\overline{Z} = 0.577$ in.