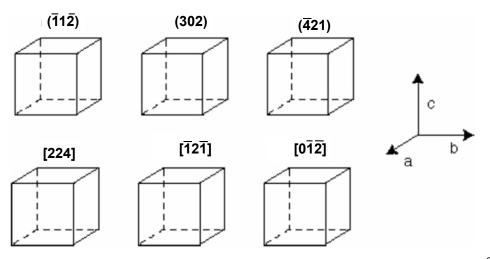
MATE 318

Spring 2025

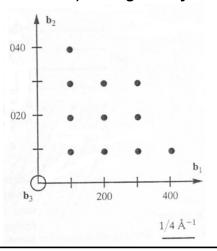

Homework 1

Due: March 11th, 2025

Group submission (up to 3 students per group) is allowed.

Question 1

Draw the three planes and three directions given below.

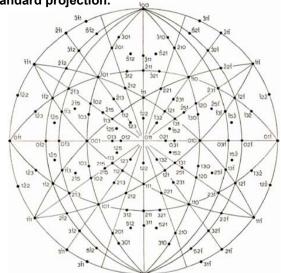

Question 2

Find the Miller indices of a plane that makes intercepts on a, b, c axes equal to 3 nm, 4 nm and 2 nm in a tetragonal crystal with the c/a ratio of 1.5

Question 3

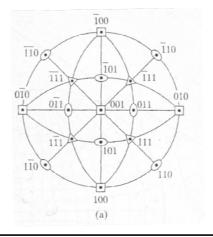
The figure below is the reciprocal lattice of a cubic system with a lattice parameter of 4 Angstroms.

- a) Use this figure and find the angle between (140) and (310) planes
- b) Verify your result in a) through analytical solution.


2

4

Question 4


For a cubic system:

- a) Find an axis (direction) which is parallel to both (110) and (100).
- b) Suggest three more planes which are parallel to the same axis in (a). Show them in (011) standard projection.

Question 5

Using the standard (001) stereographic projection for a CUBIC crystal shown below as a starting point, show the positions of the (-1 0 0), (-1 0 1), (1 0 1) and (1 0 0) poles for a TETRAGONAL crystal, with c = 1.59 a. (HINT: Think about how the projected poles move as the crystal distorts from cubic to tetragonal.)

Question 6

The air absorption of X-rays can cause troubles, especially with longer wavelength X-rays.

- a) Calculate the transmission factor (I_x/I_0) of Mo K_α xrays (0.071 nm) by one meter of air,
- b) How far should Mo K_{α} travel to have I_{x}/I_{0} of 1/10000?

Assume that air has chemical composition of 75.4% N₂, 23.2% O_2 and 1.4% Ar by weight with a density of 1.29×10⁻³ g/cm³.