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CHAPTER 4 | MOTION IN TWO

AND THREE DIMENSIONS

Introduction

• In Chapter 2 we had considered 1D motion along a straight line, and
in the next chapter we had diverted our attention to vectors. Armed
with the power of vectors, we resume in the present chapter analyz-
ing motion, but this time we will focus on motion in two and three
dimensions, i.e., 2D or 3D motion.

• As you shall see shortly, 2D and 3D motions are essentially the straight-
forward extension of 1D motion; that is, if you have grasped firmly the
notions of 1D motion, you will have no difficulty at all in understanding
2D or 3D motion.

• Although the title of this chapter reads “motion in two and three di-
mensions,” we shall limit our discussion mainly to the 2D case: motion
in a plane.
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Position

• We will show the position of a moving object at any time t by the so-
called position vector r, whose tail is at the origin and whose head
is at a point (x, y, z) (See Figure 1).

r(t) = x(t)i+ y(t)j+ z(t)k (m)

y

x

r
zk

x i
y j

z
(x,y,z)

Figure 1: A position vector locating an object at a point (x, y, z).

where x(t), y(t), and z(t) are the respective x-, y-, and x-coordinates
of the object at time t.

• Out of visual clarity concern, I will omit time t from now on and simply
write, for example, x instead of writing x(t). With this in mind, I will
rewrite the above equation for the position vector as

r = xi+ yj+ zk (m)

The thumbrule you should observe is that r0 means, for example, the
position vector of an object at time t = 0. Although we can use any of
the notations r0, r(0), r(t = 0), r(t)|t=0 for this, I shall always use the
first one, r0, and also recommend it to you. Now with this convention
at hand, r means the position of the object at any time t, including
t = 0. Similarly, y0 will be the y-coordinate of the object at time t = 0,
and y will mean its y-coordinate at any time t, including t = 0.
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• It is now obvious that the magnitude of a position vector, which is the
distance between the object and the origin, is found using

r ≡ |r| =
√

x2 + y2 + z2 (m)

Example

In Figure 2 is the position vector r = 4i−3j+4k for an object located
at point (4,−3, 4). The length of this vector, i.e., the distance between
the object and the origin, is

r =
√

42 + (−3)2 + 42 units =
√
41 units ≈ 6.40 units.
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Figure 2: The position vector r = 4i− 3j+ 4k for an object at point (4,−3, 4).

Displacement

• Since a position vector r locates an object, when the particle changes
its location, so does r. As in Figure 3, if the object moves from position
r1 = x1i+ y1j+ z1k and arrives at position r2 = x2i+ y2j+ z2k at a
later time, its displacement vector, denoted by ∆r, gives us the net
change (or overall change) in its position. It is obvious that ∆r equals
the vector r2 − r1:

∆r = r2 − r1

= (x2 − x1) i+ (y2 − y1) j+ (z2 − z1)k (m)

= ∆x i+∆y j+∆z k
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∆r = r  − r

x
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r1
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y

Figure 3: The displacement vector ∆r = r2 − r1.

• The following consideration is much more meaningful: if the object
initially at r1 undergoes a displacement ∆r and arrives at position r2,
we must have

r1 +∆r = r2

Example

Let the object in the preceding example starts to move from the initial
position r1 = (4i − 3j + 4k) m, follows some path, and arrives at the
final position r2 = (3i+4j+3k) m at a later time. Figure 4 illustrates
the motion of the object.
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Figure 4: The displacement vector ∆r for a moving object.
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The displacement that the object experiences is

∆r = r2 − r1

= (x2 − x1) i+ (y2 − y1) j+ (z2 − z1)k

= (3− 4) i+ (4− (−3)) j+ (3− 4)k

= (−i+ 7j− k) m.

The distance between the initial and final positions is the magnitude
of the displacement vector we found above:

∆r =
√

(−1)2 + 72 + (−1)2 m =
√
51 m ≈ 7.14 m.

You should note that this distance is not equal to the length of the
path that the object followed. The conclusion, therefore, is that the
displacement vector of an object does not give any information about
the actual path of the object; it does provide only the net change in
the position of the object moving between two definite positions, r1
and r2.

Average Velocity

• Let a moving object be at position r1 at time t1 and at position r2 at
a later time t2. The average velocity of the object, which is a vector
quantity, is defined as

vavg =
∆r

∆t
=

r2 − r1
t2 − t1

(m/s)

• Average velocity of an object gives a rough answer to the question how

fast the object moves between the two positions r1 and r2.

• Since t2 > t1, ∆t is always a positive quantity. It thus follows from the
above equation that the average velocity vector vavg is in the direction
of the displacement vector ∆r. Therefore, vavg and ∆r in Figure 5
below are drawn in parallel.
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Figure 5: The average and instantaneous velocity vectors for a moving object.

Example

An object changes its position according to the relation

r(t) = (t+ 1) i+
(

t2 − 4
)

j− tk

where r is in meters and t is in seconds. Let us find its average velocity
between t = 1 s and t = 3 s. We need first the positions at these times:

r(1) = (1 + 1) i+
(

12 − 4
)

j− 1k = (2 i− 3 j− k) m

r(3) = (3 + 1) i+
(

32 − 4
)

j− 3k = (4 i− 5 j− 3k) m

With these, the desired average velocity is found as

vavg =
∆r

∆t
=

r(3)− r(1)

3− 1
=

(4 i− 5 j− 3k)− (2 i− 3 j− k)

2

= (i− j− k) m/s

and its magnitude is

vavg =
√

12 + (−1)2 + (−1)2 =
√
3 m/s ≈ 1.73 m/s.
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(Instantaneous) Velocity

• Since vavg is not sufficiently informative, most of the time we are
interested in the (instantaneous) velocity v of an object at some
instant. We define v as the limiting value vavg as the time interval ∆t
approaches zero:

v = lim
∆t→0

∆r

∆t
=

dr

dt
(m/s)

• Saying every time “instantaneous velocity” is somewhat cumbersome;
henceforth we will say just velocity v, without the redundant adjec-
tive “instantenous.”

• The above definition implies implicitly that the velocity v of a moving

object is everywhere tangent to the object’s path, as illustrated in Fig-
ure 5. This is an important piece of information; you’d better know it
by heart.

• Using the explicit form of the position vector, r = x i + y j + z k, the
above relation for the velocity v leads to

v =
dr

dt
=

d

dt
(x i+ y j+ z k) =

dx

dt
i+

dy

dt
j+

dz

dt
k

Here it is natural to interpret dx/dt as the magnitude of the velocity
vector in the x-direction; the similar interpretations follow also for
dy/dt and dz/dt:

vx =
dx

dt
, vy =

dy

dt
, vz =

dz

dt

We can thus write the velocity vector in terms of rectangular coordi-
nates in three different forms as

v = vx + vy + vz

= vx i+ vy j+ vz k

=
dx

dt
i+

dy

dt
j+

dz

dt
k

• The magnitude of the velocity vector of an object at a certain time is
called its speed at that time:

v =
√

v2x + v2y + v2z

Note that speed is always a positive quantity.

Atilim University - OpenCourseWare Project - phys 101 (h.o.)



8

Example

Let’s return to the previous example where the position of an object
was given as

r(t) = (t+ 1) i+
(

t2 − 4
)

j− tk

with r being in meters and t in seconds. The general relation for the
velocity of this object is determined as

v(t) =
dr

dt
=

d

dt
[(t+ 1) i+

(

t2 − 4
)

j− tk]

= (i+ 2t j− k) m/s

Using this, we can now find the object’s velocity at t = 1 s and t = 3 s:

v(1) = (i+ 2j− k) m/s and v(3) = (i+ 6j− k) m/s

The corresponding speeds are calculated to be

v(1) =
√

12 + 22 + (−1)2 =
√
6 m/s ≈ 2.45 m/s

and

v(3) =
√

12 + 62 + (−1)2 =
√
38 m/s ≈ 6.16 m/s

In the previous example, we had found the magnitude of the object’s
average velocity between t = 1 s and t = 3 s as vavg ≈ 1.73 m/s. This
result is not equal at all to 1

2
[v(1) + v(3)] ≈ 4.31 m/s, as might have

been wrongly guessed.

Average Acceleration

• For an object whose velocity at time t1 is v1 and at a later time t2
is v2, we define its average acceleration aavg, which is a another
vector quantity, as

aavg =
∆v

∆t
=

v2 − v1

t2 − t1

(

m/s2
)
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(Instantaneous) Acceleration

• The (instantaneous) acceleration a of an object at any time is
defined as the limiting value aavg as ∆t goes zero:

a = lim
∆t→0

∆v

∆t
=

dv

dt

(

m/s2
)

That is, the acceleration vector a is the first time-derivative of the
velocity vector v.

• Since the acceleration vector a is a measure of the change of the ve-
locity vector v at some instant t, the direction of a in regard to v
gives two important information at t: (1) in which way the path of
the object in question curves, as it is illustrates in Figure 6, and (2) if
the object’s speed is increasing or decreasing. In other words, if an ob-
ject has a non-zero acceleration vector, its velocity vector must change
either its direction or its magnitude, or both.

the object
path of 

x

z

y

v

v

aa

Figure 6: The average and instantaneous velocity vectors for a moving object.

• We can decompose the acceleration vector into two components, as in
Figure 7; one of them is parallel (or antiparallel) to the velocity vector
v (or tangent to the path of the object) and is called the tangential
acceleration at; the other one is perpendicular to v and is referred
to as radial (or, centripetal) acceleration ar. Now the rule that
you should know by heart is stated as:
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The tangential acceleration at is responsible only for the change
in the magnitude of the object’s velocity (i.e., for its speed);
the direction of its velocity is governed only by the radial

acceleration ar.

Mathematically, these two statements amount respectively to

at =
dv

dt
and ar =

v2

r

where r is the radius of the curvature of the path at the point where the
radial acceleration is calculated. The first formula for at here should
be obvious from the above discussion. The second one for ar is subtle
for the time being, but will be clear before the end of this chapter.

the object
path of 

r

t

x

z

y

v

a

a

a

Figure 7: An acceleration vector a decomposed its tangential, at, and radial, ar,
components.

• Since v = dr/dt, a is seen to be equal also the second time-derivative
of the position vector r:

a =
dv

dt
=

d2r

dt2
(

m/s2
)
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• Since v = vx i + vy j + vz k, the acceleration can be written in the
unit-vector notation as

a =
dv

dt
=

d

dt
(vx i+ vy j+ vz k) =

dvx
dt

i+
dvy
dt

j+
dvz
dt

k

where dvx/dt is the magnitude of the acceleration vector in the x-
direction, and so on:

ax =
dvx
dt

=
d2x

dt2
, ay =

dvy
dt

=
d2y

dt2
, az =

dvz
dt

=
d2z

dt2

With these, the acceleration of an object in rectangular coordinates
can be expressed in four different forms:

a = ax + ay + az

= ax i+ ay j+ az k

=
dvx
dt

i+
dvy
dt

j+
dvz
dt

k

=
dx2

dt2
i+

dy2

dt2
j+

dz2

dt2
k

• The magnitude of the acceleration vector of an object at some instant is

a =
√

a2x + a2y + a2z

which has no special name as that of the velocity vector, which was
speed.

Example

The position of a bus, of old days, around a high mountain, which is
shown in Figure 8, could be approximated by

r(t) =
(

− 1
10

t3 + 2t2 − 10t
)

i+
(

−t2 + 2t+ 12
)

j

where r is in kilometers and t is in hours. Let us find the kinematic
quantities of the bus at t = 2 h. To this end, we first determine the
velocity and acceleration vectors:

v(t) =
dr

dt
=

(

− 3
10

t2 + 4t− 10
)

i+ (−2t+ 2) j

a(t) =
dv

dt
=

(

−3
5
t+ 4

)

i− 2 j
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Figure 8: The position and velocity vectors of the bus at t = 2 h.

The position of the bus in unit-vector notation at t = 2 h is

r(2) =
(

− 1
10

23 + 2 · 22 − 10 · 2
)

i+
(

−22 + 2 · 2 + 12
)

j

= (−12.8 i+ 12.0 j) km,

or we have in magnitude-angle notation that

r(2) =
√

(−12.8)2 + 12.02 ≈ 17.5 km,

and

α = arctan

(

12.0

−12.8

)

= −43.152◦ + 180◦ ≈ 137◦

We thus say that the bus is at a distance of 17.5 km and makes an
angle of 137◦ with respect to the positive x-axis. The position vec-
tor r(2) is shown in Figure 8 in red.

We find the bus’ velocity in unit-vector notation at t = 2 h as

v(2) =
(

− 3
10

22 + 4 · 2− 10
)

i+ (−2 · 2 + 2) j

= (−3.20 i− 2.00 j) km/h.

In Figure 8 this vector is drawn in blue; notice how beautifully and
flawlessly v(2) osculates the path of the bus! The magnitude of v(2)
is calculated to be

v(2) =
√

(−3.20)2 + (−2.00)2 ≈ 3.77 km/h
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and the angle it makes with respect to the positive x-direction is

β = arctan

(−2.00

−3.20

)

= 32.005◦ + 180◦ ≈ 212◦

which is also indicated in Figure 8.

What about the bus’ acceleration at t = 2 h? We have in unit-vector
notation

a(2) =
(

−3
5
· 2 + 4

)

i− 2 j = (2.80 i+ 2.00 j) km/h2

which is shown in Figure 9 in magenta. Its magnitude is

a(2) =
√

(2.802 − 2.002 ≈ 3.44 km/h2

and the angle it makes with positive x-direction is

γ = arctan

(−2.00

2.80

)

≈ −35.5◦
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Figure 9: The velocity and acceleration vectors of the bus at t = 2 h.
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In Figure 9 we have decomposed the acceleration vector a(2) into its
tangential and radial components. We note that v and at at t = 2 h
are anti-parallel, meaning that the speed v of the bus at this moment
is decreasing (as a prudent driver should do as negotiating a sharp
bend!). We also see that the existence of a fairly large-magnitude
ar causes the bus to change its direction sharply downward, as it is
clearly illustrated in Figure 9. We can numerically verify these two
observations. The best way to do this to calculate the speed v and the
corresponding angle at t = 2.1 h:

v(2.1) =
[

− 3
10

(2.1)2 + (4)(2.1)− 10
]

i+ [−(2)(2.1) + 2] j

= (−2.923 i− 2.20 j) km/h.

v(2.1) =
√

(−2.923)2 + (−2.20)2 ≈ 3.66 km/h

which is less than v(2) ≈ 3.77 km/h, as we claimed. As to the angle
that v(2.1) makes with the positive x-direction, we have

β(2.1) = arctan

( −2.20

−2.923

)

= 36.967◦ + 180◦ ≈ 217◦

which is significantly larger that β(2) ≈ 212◦, indicating that the bus
has turned downward by ∼ 5◦.

Motion with Constant Acceleration: 3D Consider-
ation

• In Chapter 2 we studied 1D motion with constant acceleration; with a
slight change in notation, we repeat the equations obtained there for
an object whose motion is restricted to the x-axis:

ax = const1

vx = vx0 + axt

x = x0 + vx0t+
1
2
axt

2

v2x = v2x0 + 2ax (x− x0)

Here the subscript x in ax, for example, indicates that we are consid-
ering the acceleration in the x-direction. Similarly, vx0 corresponds to
the initial velocity in the x-direction.

• We now consider a general 3D motion with constant acceleration:

a = const.
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With constant acceleration we mean that all the three components of
the acceleration vector are constant:

a = const. ⇒ ax = const1, ay = const2, az = const3

This in turn means that both the magnitude and the direction of the
acceleration vector remain constant at all times.

• It is an empirical fact that the complicated 3D motion of an object
with constant acceleration can be simplified considerably by analyzing
the motion for each dimension seperately. In other words, part of the
motion on an axis does not have any influence on other parts on the
other axes.1 Therefore, we can write sets of equations for the parts of
the motion on the y- and z-axes, just similar and in addition to that
we wrote above for the part on the x-axis:

ay = const2 az = const3

vy = vy0 + ayt vz = vz0 + azt

y = y0 + vy0t+
1
2
ayt

2 z = z0 + vz0t+
1
2
azt

2

v2y = v2y0 + 2ay (y − y0) v2z = v2z0 + 2az (z − z0)

• It is the power of mathematics that the first three equations2 in the
above sets can be written succinctly in vector language as

a = const.

v = v0 + at

r = r0 + v0t+
1
2
at2

where v = v(t) is the velocity of the object at time t; v0 = v(0) is its
initial velocity at t = 0; r = r(t) is its position at t; and r0 = r(0) is
its initial position at t = 0.

1This fact is actually a direct result of the so-called superposition principle, which
we will mention again in the following chapter.

2The last equations in these sets, in the form v
2

x
= v

2

x0+2ax (x− x0), cannot be written
in pure vector form; nonetheless, this form will pave the way for an informal introduction
to the concept of (kinetic) energy in Chapter 7.
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Motion with Constant Acceleration in a Plane: Pro-
jectile Motion

• The word projectile is a generic name for any object which is projected
(or fired or launched) from a mechanism such as a gun, weapon or
catapult, flies through the air, and maybe lands some distance away.

• Three reasonable assumptions facilitate the analysis of projectile
motion: (1) the earth is assumed to be flat over some small hori-
zontal range of the projectile;3 (2) air resistance is neglected;4 and
most importantly, (3) the projectile is assumed to be subject only to
the gravitational force, which results in a constant5 downward freefall
acceleration of magnitude g = 9.80 m/s2. Under these conditions, pro-
jectile motion takes place in a vertical plane, so that it is essentially a
2D motion with a constant acceleration.

• Throughout this chapter, we assume that the projectile motion under
question will be on the vertical xy-plane, with the x-axis being the
horizontal direction and the y-axis being the vertical direction.

• Since there is no horizontal acceleration, we have

ax = 0.

This means that the horizontal velocity of the projectile remains al-
ways constant, being equal at any time to the initial velocity:

vx = vx0 = const.

• The sole vertical acceleration is always downward; it is convenient to
write it as6

ay = −g = −9.80 m/s2.

3This assumption is valid if this small horizontal range is much less than the radius of
the earth.

4This is the weakest assumption to validate. Most of the time we cannot ignore air
resistance, but its inclusion makes it difficult to analyze the motion. Nevertheless, if
the projectile does not fly too fast, the neglect of air resistance is a fairly legitimate
approximation.

5With constant freefall acceleration we mean that we neglect the variation of g with
altitude, which is reasonable if projectile motion takes place near the surface of the earth.

6It might be useful for a diligent student to note that the projectile’s acceleration can
also be written in the vector form as

a = g (−j) = −g j.
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• With these choises, the set equations developed in the preceding sec-
tion will take the following general form:

ax = 0 ay = −g

vx = vx0 vy = vy0 − gt

x = x0 + vx0t y = y0 + vy0t− 1
2
gt2

v2y = v2y0 − 2g (y − y0)

Example: Symmetric Projectile Motion

• We now analyze the symmetric projectile motion as an example. We
mean with “symmetric” that the launching and landing points of the
projectile are on the same horizontal line (surface). As in Figure 10,
taking the origin of the xy-plane as the launching point will simplify
a bit the redundant notation7:

x0 = 0 and y0 = 0.

y

xvx0

vy0
v0

θ

θ
vx0

vvy
vx0

=0vy

vx0

vy v

v

θ

θ

vx0

vy0

0

0

horizontal range,

hmax

g

parabolic trajectory

R

Figure 10: A symmetric projectile motion.

7You can always make the launching take place at the origin with a suitable change of
coordinates.
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• Let the projectile be launched with an initial velocity v0 which makes
an initial angle θ0 with the positive x-axis. We have

v0 = vx0i+ vy0j

where vx0 and vy0 are the respective initial speeds in the x- and y-
directions, which are found from Figure 10 as

vx0 = v0 cos θ0 and vy0 = v0 sin θ0

• Now there are only two equations that govern the motion on the hor-
izontal x-direction. The first one is

vx = vx0 = v0 cos θ0 = const.

The constancy of the horizontal velocity is clearly illustrated in Fig-
ure 10, where the speed vx0 has been associated everywhere with the
same horizontal vector.

• The second equation gives the x-ccordinate of the projectile:

x = x0 + vx0t = 0 + (v0 cos θ0) t ⇒ x = (v0 cos θ0) t

There is nothing special about this result. Since v0 and θ0 are con-
stant, this equation tells us that the projectile’s x-coordinate increases
linearly with time t.

• The projectile’s vertical motion can be analyzed by three equations.
The first two are for the vertical speed:

vy = vy0 − gt ⇒ vy = v0 sin θ0 − gt

Here this result tells us that the vertical speed vy, which has an initial
positive value vy0 = v0 sin θ0, decreases as time goes on with the con-
stant accelertaion −g, then it becomes zero at its highest point, and
then it reverses its direction toward the earth, that is, its numerical
value becomes negative. The magnitude of this negative value increases
with time at every moment and the projectile hits the ground (in this
special symmetric problem) with the same vertical speed as its initial

vertical speed. These are all markedly shown in Figure 10.
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• The second equation relates the square of the initial vertical speed to
that of the vertical speed at any later time:

v2y = v2y0 − 2g (y − y0) = (v0 sin θ0)
2 − 2g (y − 0)

⇒ v2y = (v0 sin θ0)
2 − 2gy

• For the projectile’s position in the vertical direction, we have

y = y0 + vy0t− 1
2
gt2 = 0 + (v0 sin θ0) t− 1

2
gt2

From the equation for x on the previous page, we obtain the general
expression for time t as

x = (v0 cos θ0) t ⇒ t =
x

v0 cos θ0

Substituting this into the equation for y above, we get

y = (v0 sin θ0) ·
x

v0 cos θ0
− 1

2
g

(

x

v0 cos θ0

)2

whence

y = (tan θ0)x−
(

g

2v20 cos
2 θ0

)

x2

Here the expressions inside the parantheses are all constant so that
this equation is of the form y = ax2 + bx, which is an equation of
parabola passing through the origin. In other words, the path of a
projectile is a parabolic trajectory .

• At the instant the projectile’s vertical speed vy is zero, it will be in
its maximum height hmax, as shown in Figure 10. So equating the
equation for vy to zero, we find the time tmax required for the particle
to reach its maximum height:

vy = 0 = v0 sin θ0 − gtmax ⇒ tmax =
v0 sin θ0

g

Plugging this result into the equation for y, we obtain

y = hmax = (v0 sin θ0) tmax − 1
2
gt2max

= (v0 sin θ0) ·
v0 sin θ0

g
− 1

2
g ·

(

v0 sin θ0
g

)2

which leads to the maximum height for this symmetric projectile mo-
tion:

hmax =
v20 sin

2 θ0
2g
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• In Figure 10 is also shown the horizontal range R of the projectile
which is the horizontal distance between its launching point (i.e., the
origin) and its landing point whose coordinates are (x, y) = (R, 0).
We see that the time tR required for the particle to reach this point is
twice the time tmax required to reach its maximum height, which we
found above:

tR = 2tmax =
2v0 sin θ0

g

Insertion tR into the equation for x results is the particle’s horizontal
range as

x = R = (v0 cos θ0) tR = (v0 cos θ0) ·
2v0 sin θ0

g
=

2v20 sin θ0 cos θ0
g

Since
2 sin θ0 cos θ0 = sin 2θ0

we write the expression for R in a more concise form as

R =
v20
g

sin 2θ0

Don’t forget that this result is valid if and only if we have a symmetric

projectile motion; if the launching and landing points are not on the
same horizontal level, you cannot use this result.

• The expression for R above has two important consequences. The
first one is that R is maximum when sin 2θ0 = 1, which amounts to
2θ0 = 90◦ or θ0 = 45◦.

• The second consequence follows from the expression

sin 2θ0 = 2 sin θ0 cos θ0

which tells us that for two complementary initial angles (i.e., angles
which add up to 90◦), say 30◦ and 60◦, we have the same sin 2θ0
values, because sin 30◦ = cos 60◦, and vice versa. We then draw the
conclusion that two complementary initial angles give rise to the same
horizontal range R for a symmetric projectile motion, as Figure 11
clearly illustrates for θ0 = 30◦ and 60◦.
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Figure 11: Two complementary initial angles lead to the same horizontal range R
for a symmetric projectile motion.

Uniform Circular Motion

• As the one in Figure 12, an object orbiting a fixed point at constant

(or, uniform) speed is said to be in uniform circular motion.

v

v

a

a

a
a

a

vv

v

r

Figure 12: An object undergoing a uniform circular motion.

• Although its speed v is constant, the velocity v of the object does

change, because its direction changes continuously, as is seen in Fig-
ure 12. Since acceleration by definition is the change in velocity v in
time, the object does continuously undergo an acceleration.
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• Out of its importance, it is convenient to state first the underlying
properties of uniform circular motion:

1. Uniform circular motion takes place in a plane, so that it is a 2D
motion.

2. The path of the object might also be a circular arc, not necessarily
a complete circle.

3. The speed v of the object is always constant around its circular
path.

4. The velocity v of the object is everywhere tangent to its circular
path (Figure 12).

5. The acceleration a of the object is everywhere perpendicular to
the velocity vector and is always directed to the center of the
circular path. In other words, a is radially inward (Figure 12).
Because of these, the object’s acceleration a = ar is called radial
acceleration, or frequently centripetal acceleration.8

We shall show shortly that the magnitude of this radial acceler-
ation is given by

a = ar =
v2

r

where v is the speed of the object, and r is the radius of its
circular path. You can easily verify that this expression has the
correct unit of acceleration, m/s2.

6. If the object’s path is a complete circle, its acceleration vector
has no component along its velocity vector; that is, there is no
tangential acceleration vector: at = 0.

7. We call the time T required for the object to complete one rev-
olution as the period of the motion. Since the object travels a
distance of 2πr in one revolution, it follows from the definition of
speed that v = 2πr/T , or

T =
2πr

v
(s)

8The word “centripetal” comes from Latin centrum, meaning “center,” and petere,
meaning “to seek,” so that centripetal literally means “center seeking.”
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• Let’s now prove that acceleration a is directed toward the center of
the circle and that its magnitude is given by a = ar = v2/r. To do
so we will use Figure 13, where the object is at position 1 at time t1
and at position 2 to at a later time t2. The object’s velocity is v1 at 1
and v2 at 2, with v1 = v2 = v; that is, the object’s velocity changes
only its direction while its magnitude remains constant.

−v
r r∆θ

∆s

v

v2

1 2

θ∆v∆

1

v2

1

Figure 13: Figures for the derivation of a = ar = v2/r.

The average acceleration of the object when it goes from position 1 to
position 2 is

aavg =
∆v

∆t
=

v2 − v1

t2 − t1

We are then required to determine ∆v = v2 − v1, which we have per-
formed graphically in the vector triangle, shown also Figure 13. We
notice immediately that ∆v is directed toward the center of the circle!
This conclusion is also valid if we let time ∆t be infinitesimally small.

To determine the magnitude of aavg when ∆t → 0, we write the mag-
nitude of the first part of the preceding equation as

aavg =
∆v

∆t

Figure 13 shows two congruent (or similar) triangles, one on the left
with sides ∆s and r and one on the right with sides ∆v and v. The
congruency condition gives us

∆s

r
=

∆v

v
or ∆v =

v

r
∆s

With this result we have

aavg =
∆v

∆t
=

v∆s/r

∆t
=

v

r

∆s

∆t
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We then take the limit of this expression as ∆t → 0; this means that
the distance between positions 1 and 2 is infinitesimally small. In
this limit the ratio ∆s/∆t approaches the speed v of the object and
the average velocity aavg appraches the instantaneous acceleration a,
which is the centripetal acceleration ar of the object,

lim
∆t→0

aavg = a = ar = lim
∆t→0

v

r

∆s

∆t
=

v

r
· v =

v2

r

which is what we set out to prove.

Key Words, Phrases, and Equations

• Position vector:
r = xi+ yj+ zk (m)

r ≡ |r| =
√

x2 + y2 + z2 (m)

• Displacement vector:

∆r = r2 − r1

= (x2 − x1) i+ (y2 − y1) j+ (z2 − z1)k (m)

= ∆x i+∆y j+∆z k

• Average velocity:

vavg =
∆r

∆t
=

r2 − r1
t2 − t1

(m/s)

• (Instantaneous) velocity:

v = lim
∆t→0

∆r

∆t
=

dr

dt
(m/s)

v = vx + vy + vz

= vx i+ vy j+ vz k (m/s)

=
dx

dt
i+

dy

dt
j+

dz

dt
k
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• Speed:

v =
√

v2x + v2y + v2z (m/s)

• Average acceleration:

aavg =
∆v

∆t
=

v2 − v1

t2 − t1

(

m/s2
)

• (Instantaneous) acceleration:

a = lim
∆t→0

∆v

∆t
=

dv

dt

(

m/s2
)

a =
dv

dt
=

d2r

dt2
(

m/s2
)

a = ax + ay + az

= ax i+ ay j+ az k

=
dvx
dt

i+
dvy
dt

j+
dvz
dt

k
(

m/s2
)

=
dx2

dt2
i+

dy2

dt2
j+

dz2

dt2
k

a =
√

a2x + a2y + a2z
(

m/s2
)

• Tangential and radial accelerations:

at =
dv

dt
and ar =

v2

r

• Motion with constant acceleration:

a = const.

v = v0 + at

r = r0 + v0t+
1
2
at2
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• Projectile motion:

ax = 0 ay = −g

vx = vx0 vy = vy0 − gt

x = x0 + vx0t y = y0 + vy0t− 1
2
gt2

v2y = v2y0 − 2g (y − y0)

• Parabolic trajectory, maximum altitude hmax, horizontal range R,
complementary angles.

• Radial (centripetal) acceleration in a uniform circular motion:

a = ar =
v2

r

• Period of a uniform circular motion:

T =
2πr

v
(s)
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