CHAPTER 4 | MOTION IN TWO
AND THREE DIMENSIONS

Introduction

e In Chapter 2 we had considered 1D motion along a straight line, and
in the next chapter we had diverted our attention to vectors. Armed
with the power of vectors, we resume in the present chapter analyz-
ing motion, but this time we will focus on motion in two and three
dimensions, i.e., 2D or 3D motion.

e Asyou shall see shortly, 2D and 3D motions are essentially the straight-
forward extension of 1D motion; that is, if you have grasped firmly the
notions of 1D motion, youwill have no difficulty at all in understanding
2D or 3D motion.

e Although the title of this chapter reads “motion in two and three di-
mensions,” we shall limit our discussion mainly to the 2D case: motion
in a plane.



Position

e We will show the position of a moving object at any time t by the so-
called position vector r, whose tail is at the origin and whose head
is at a point (x,y, z) (See Figure 1).

r(t) =xz(t)i+y(t)j + z(H)k (m)

(xy.2)

X
Figure 1: A position vector locating an object at a point (z,y, 2).

where x(t), y(t), and z(t) are the respective x-, y-, and x-coordinates
of the object at time t.

e Out of visual clarity concern, I will omit time ¢ from now on and simply
write, for example, z instead of writing x(¢). With this in mind, I will
rewrite the above equation for the position vector as

r=zxi+yj+zk (m)

The thumbrule you should observe is that ry means, for example, the
position vector of an object at time ¢t = 0. Although we can use any of
the notations ro, r(0), r(t = 0), r(t)|,_, for this, I shall always use the
first one, rp, and also recommend it to you. Now with this convention
at hand, r means the position of the object at any time t, including
t = 0. Similarly, yo will be the y-coordinate of the object at time ¢ = 0,
and y will mean its y-coordinate at any time ¢, including ¢ = 0.
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e It is now obvious that the magnitude of a position vector, which is the
distance between the object and the origin, is found using

r=r|=va?+y>+22 (m)

Example

In Figure 2 is the position vector r = 4i — 3j + 4k for an object located
at point (4, —3,4). The length of this vector, i.e., the distance between
the object and the origin, is

r = /42 + (—3)2 + 42 units = V41 units ~ 6.40 units.

Figure 2: The position vector r = 4i — 3j + 4k for an object at point (4, —3,4).

Displacement

e Since a position vector r locates an object, when the particle changes
its location, so does r. As in Figure 3, if the object moves from position
r1 = z1i + y1j + 21k and arrives at position ro = xoi + y2j + 20k at a
later time, its displacement vector, denoted by Ar, gives us the net
change (or overall change) in its position. It is obvious that Ar equals
the vector ro — ry:

Ar = r1r9—r14
(w2 —z1)i+ (Y2 —y1)j+ (22 —21)k (m)
= Azi+Ayj+ Azk
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Figure 3: The displacement vector Ar =ry — ry.

e The following consideration is much more meaningful: if the object
initially at r1 undergoes a displacement Ar and arrives at position ro,
we must have

ri +Ar =r9

Example

Let the object in the preceding example starts to move from the initial
position ry = (4i — 3j + 4k) m, follows some path, and arrives at the
final position ry = (3i+4j+3k) m at a later time. Figure 4 illustrates
the motion of the object.

Figure 4: The displacement vector Ar for a moving object.
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The displacement that the object experiences is

Ar = ro9—1]
= (w2—x)i+(y2—y)i+(,2—2)k
= 3-4)i+(@—-(-3)j+B—-4k
= (~i+7j—k) m

The distance between the initial and final positions is the magnitude
of the displacement vector we found above:

Ar=+/(-124+ 7+ (-1)2m =51 m~ 7.14 m.

You should note that this distance is not equal to the length of the
path that the object followed. The conclusion, therefore, is that the
displacement vector of an object does not give any information about
the actual path of the object; it does provide only the net change in
the position of the object moving between two definite positions, ry
and ro.

Average Velocity

e Let a moving object be at position r; at time ¢; and at position ry at
a later time t2. The average velocity of the object, which is a vector
quantity, is defined as

Ar r1r9—1
Vavg = Kt = ty — 1 (m/s)

e Average velocity of an object gives a rough answer to the question how
fast the object moves between the two positions ry and rs.

e Since to > t1, At is always a positive quantity. It thus follows from the
above equation that the average velocity vector v,y is in the direction
of the displacement vector Ar. Therefore, v,y and Ar in Figure 5
below are drawn in parallel.
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path of
the object

X

Figure 5: The average and instantaneous velocity vectors for a moving object.

Example
An object changes its position according to the relation
r(t)=(t+1)i+ (t*—4)j—tk

where r is in meters and ¢ is in seconds. Let us find its average velocity
between t = 1 s and t = 3 s. We need first the positions at these times:

r(l) = (1+1)i+(1*>-4)j-1k=(2i-3j-k)m
r(3) = (3+1)i+(3°-4)j—-3k=(4i-5j-3k)m
With these, the desired average velocity is found as

Ar  r(3)-r(1)  (4i-5j-3k) - (2i—3j—K)

Vave = Ay T T 37 2
— (i—j—k) m/s

and its magnitude is

Vavg = V12 + (=1)2 + (—1)2 = V3 m/s ~ 1.73 m/s.
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(Instantaneous) Velocity

e Since Vaye is not sufficiently informative, most of the time we are
interested in the (instantaneous) velocity v of an object at some
instant. We define v as the limiting value v,y as the time interval At
approaches zero:

. Ar dr
vl T )

e Saying every time “instantaneous velocity” is somewhat cumbersome;
henceforth we will say just velocity v, without the redundant adjec-
tive “instantenous.”

e The above definition implies implicitly that the velocity v of a moving
object is everywhere tangent to the object’s path, as illustrated in Fig-
ure 5. This is an important piece of information; you’d better know it
by heart.

e Using the explicit form of the position vector, r = zi+ yj + z k, the
above relation for the velocity v leads to
dy . dz

dr d dx
_dr_d . . - G dy dz
v g dt(aﬁ1+y3+z ) dtl+dt‘]+dtk

Here it is natural to interpret dz/dt as the magnitude of the velocity
vector in the z-direction; the similar interpretations follow also for
dy/dt and dz/dt:

dx dy dz

a oA T at

We can thus write the velocity vector in terms of rectangular coordi-
nates in three different forms as

Vye =

vV = Vgt vytv,
= ity jt+uk
de, dy. dz

_ drydyy dzy
a' Tl T

e The magnitude of the velocity vector of an object at a certain time is
called its speed at that time:

— 2 2 2
UV =4/ Uz + vy + U3

Note that speed is always a positive quantity.
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Example

Let’s return to the previous example where the position of an object
was given as

r(t)=(t+1)i+ (#*—4)j—tk

with 7 being in meters and ¢ in seconds. The general relation for the
velocity of this object is determined as

dr d 9
t) = —=—[t+Di+(t"—4)j—tk
v(t) = = DI+ (E-4)j 1K
= (i+2tj—k) m/s
Using this, we can now find the object’s velocity at t =1 sand ¢t = 3 s:

v(il)=(1i+2j—k)m/s and v(3)=(i+6j—k)m/s

The corresponding speeds are calculated to be

v(1) = /12 +22 4+ (=1)2 = V6 m/s ~ 2.45 m/s

and

v(3) = /12 + 62 + (—=1)2 = V38 m/s ~ 6.16 m/s

In the previous example, we had found the magnitude of the object’s
average velocity between ¢t =1 s and t = 3 s as vayvg ~ 1.73 m/s. This
result is not equal at all to 3 [v(1) + v(3)] &~ 4.31 m/s, as might have
been wrongly guessed.

Average Acceleration

e For an object whose velocity at time ¢; is v; and at a later time ¢
is vo, we define its average acceleration a,,,, which is a another
vector quantity, as

Av vy —Vvy
a = — =
WETAL ta—t

(m/s%)
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(Instantaneous) Acceleration

e The (instantaneous) acceleration a of an object at any time is
defined as the limiting value a,y, as At goes zero:

1 =y %Y 2
a=lm =@ (m/s°)

That is, the acceleration vector a is the first time-derivative of the
velocity vector v.

e Since the acceleration vector a is a measure of the change of the ve-
locity vector v at some instant ¢, the direction of a in regard to v
gives two important information at ¢: (1) in which way the path of
the object in question curves, as it is illustrates in Figure 6, and (2) if
the object’s speed is increasing or decreasing. In other words, if an ob-
ject has a non-zero acceleration vector, its velocity vector must change
either its direction or its magnitude, or both.

path of
the object

X

Figure 6: The average and instantaneous velocity vectors for a moving object.

e We can decompose the acceleration vector into two components, as in
Figure 7; one of them is parallel (or antiparallel) to the velocity vector
v (or tangent to the path of the object) and is called the tangential
acceleration a;; the other one is perpendicular to v and is referred
to as radial (or, centripetal) acceleration a,. Now the rule that
you should know by heart is stated as:
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The tangential acceleration ay is responsible only for the change
in the magnitude of the object’s velocity (i.e., for its speed);
the direction of its velocity is governed only by the radial

acceleration a;.

Mathematically, these two statements amount respectively to

ag

_d
S dt

and

2

Ay — —
r

where r is the radius of the curvature of the path at the point where the
radial acceleration is calculated. The first formula for a¢ here should
be obvious from the above discussion. The second one for a, is subtle
for the time being, but will be clear before the end of this chapter.

path of
the object

X

A7

Figure 7: An acceleration vector a decomposed its tangential, at, and radial, ay,

components.

e Since v = dr/dt, a is seen to be equal also the second time-derivative

of the position vector r:

dv

- =

d?r

dt?

(m/s%)
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e Since v = v, i+ v,j + v. k, the acceleration can be written in the
unit-vector notation as
dvg ,  dvy, dv,

O T
AT T g\ T TR = at 37T

where dv,/dt is the magnitude of the acceleration vector in the -
direction, and so on:

. dvy d’x _duy d%y _ dv, d?z

a a2z YT a T awr T w T A

With these, the acceleration of an object in rectangular coordinates
can be expressed in four different forms:

a = a;+ta,+ta;
azi+ayj+ak
dvy ., dvy, dv,
T I
dz? . dy? dz>

k

w2 T T e

e The magnitude of the acceleration vector of an object at some instant is

— /g2 2 2
a = /az + ay +a;

which has no special name as that of the velocity vector, which was
speed.

Example

The position of a bus, of old days, around a high mountain, which is
shown in Figure 8, could be approximated by

r(t) = (=5t + 267 = 10t) i+ (—2 + 2t +12) j

where 7 is in kilometers and ¢ is in hours. Let us find the kinematic
quantities of the bus at ¢ = 2 h. To this end, we first determine the
velocity and acceleration vectors:

dr

v(t) = az(—f’—ot2+4t—10)i+(—2t+2)j
dV 3 . .
a(t) = - =(-5t+4)i-2]
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Y (km)
212° t=0 T 14

bus’ path T 12

)
/\137"
| | | | | | | x(km)
0

T T T T T T T
-14X12 -10 -8 -6 -4 -2
t=5h

Figure 8: The position and velocity vectors of the bus at ¢t = 2 h.

The position of the bus in unit-vector notation at t = 2 h is

r(2) = (—52°+2-22-10-2)i+ (-2°+2-2+12)j
= (—12.8i+12.0j) km,

or we have in magnitude-angle notation that

r(2) = /(—12.8)2 + 12.02 ~ 17.5 km,

and 19.0
= t — | = —43.152° + 180° ~ 137°
o = arctan <—12.8> +

We thus say that the bus is at a distance of 17.5 km and makes an
angle of 137° with respect to the positive z-axis. The position vec-
tor r(2) is shown in Figure 8 in red.

We find the bus’ velocity in unit-vector notation at t = 2 h as
v(2) = (-32°+4-2-10)i+(-2-2+2)j
= (=3.20i—2.00j) km/h.
In Figure 8 this vector is drawn in blue; notice how beautifully and

flawlessly v(2) osculates the path of the bus! The magnitude of v(2)
is calculated to be

v(2) = \/(—3.20)2 + (—2.00)2 ~ 3.77 km/h

ATILIM UNIVERSITY - OPENCOURSEWARE PROJECT - PHYS 101 (H.O.)



13

and the angle it makes with respect to the positive z-direction is

—2.00
= arct ——— | =32.005° + 180° ~ 212°
B = arctan ( 3 20) +

which is also indicated in Figure 8.

What about the bus’ acceleration at t = 2 h? We have in unit-vector
notation

a(2)=(-2-2+4)i—2j=(2.80i+2.00j) km/h?
which is shown in Figure 9 in magenta. Its magnitude is

a(2) = 1/(2.802 — 2.002 ~ 3.44 km/h?

and the angle it makes with positive x-direction is

—2.00

—— ) ~ —35.5°
2.80 >

v = arctan (

Y (km)

1 1 1 1 1 1 1 0 x (km)
-14 \-12 -10 -8 -6 -4 =2

t=5h

Figure 9: The velocity and acceleration vectors of the bus at t = 2 h.
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In Figure 9 we have decomposed the acceleration vector a(2) into its
tangential and radial components. We note that v and a; at t =2 h
are anti-parallel, meaning that the speed v of the bus at this moment
is decreasing (as a prudent driver should do as negotiating a sharp
bend!). We also see that the existence of a fairly large-magnitude
a, causes the bus to change its direction sharply downward, as it is
clearly illustrated in Figure 9. We can numerically verify these two
observations. The best way to do this to calculate the speed v and the
corresponding angle at ¢t = 2.1 h:

v(21) = [ 212+ 4)(2.1) —10]i+ [—(2)(2.1) + 2]
(—2.923i —2.20j) km/h.

v(2.1) = /(-2.923)2 4 (—2.20)2 ~ 3.66 km/h

which is less than v(2) = 3.77 km/h, as we claimed. As to the angle
that v(2.1) makes with the positive z-direction, we have

~2.20 . o oo
B(2.1) = arctan <_2923> = 36.967° + 180° ~ 217

which is significantly larger that §(2) ~ 212°, indicating that the bus
has turned downward by ~ 5°.

Motion with Constant Acceleration: 3D Consider-
ation

e In Chapter 2 we studied 1D motion with constant acceleration; with a
slight change in notation, we repeat the equations obtained there for
an object whose motion is restricted to the z-axis:

a, = consty
Vpy = Uy + ayt

T = X0+ Vgt + % ath
v2 = 2+ 2a, (z — x0)

Here the subscript = in a,, for example, indicates that we are consid-
ering the acceleration in the z-direction. Similarly, v;o corresponds to
the initial velocity in the x-direction.

e We now consider a general 3D motion with constant acceleration:

a = const.
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With constant acceleration we mean that all the three components of
the acceleration vector are constant:

a=const. = a, =const;, ay=conste, a, = constg

This in turn means that both the magnitude and the direction of the
acceleration vector remain constant at all times.

e [t is an empirical fact that the complicated 3D motion of an object
with constant acceleration can be simplified considerably by analyzing
the motion for each dimension seperately. In other words, part of the
motion on an axis does not have any influence on other parts on the
other axes.! Therefore, we can write sets of equations for the parts of
the motion on the y- and z-axes, just similar and in addition to that
we wrote above for the part on the z-axis:

Gy = consto a, = consts
Vy = Uyo + ayt Vy = V0 + ayt
Y = yo + vyot + 1 ayt? 2 = 20 + vsot + 3 ast?
vy = o + 20y (¥ — o) vl =% + 20z (2 — 20)

e It is the power of mathematics that the first three equations? in the
above sets can be written succinctly in vector language as

a = const.
v = vp+at
r = ro+vol+ % at?

where v = v(t) is the velocity of the object at time t; vo = v(0) is its
initial velocity at ¢ = 0; r = r(¢) is its position at ¢; and ro = r(0) is
its initial position at ¢ = 0.

IThis fact is actually a direct result of the so-called superposition principle, which
we will mention again in the following chapter.

2The last equations in these sets, in the form v2 = v2;+2a, (x — x0), cannot be written
in pure vector form; nonetheless, this form will pave the way for an informal introduction
to the concept of (kinetic) energy in Chapter 7.
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Motion with Constant Acceleration in a Plane: Pro-
jectile Motion

e The word projectile is a generic name for any object which is projected
(or fired or launched) from a mechanism such as a gun, weapon or
catapult, flies through the air, and maybe lands some distance away.

e Three reasonable assumptions facilitate the analysis of projectile
motion: (1) the earth is assumed to be flat over some small hori-
zontal range of the projectile;® (2) air resistance is neglected;* and
most importantly, (3) the projectile is assumed to be subject only to
the gravitational force, which results in a constant® downward freefall
acceleration of magnitude g = 9.80 m/s?. Under these conditions, pro-
jectile motion takes place in a wvertical plane, so that it is essentially a
2D motion with a constant acceleration.

e Throughout this chapter, we assume that the projectile motion under
question will be on the vertical xy-plane, with the x-axis being the
horizontal direction and the y-axis being the vertical direction.

e Since there is no horizontal acceleration, we have
a; = 0.

This means that the horizontal velocity of the projectile remains al-
ways constant, being equal at any time to the initial velocity:

Vyp = Vg0 = const.

e The sole vertical acceleration is always downward; it is convenient to
write it as®
ay = —g = —9.80 m/s?.

3This assumption is valid if this small horizontal range is much less than the radius of
the earth.

“This is the weakest assumption to validate. Most of the time we cannot ignore air
resistance, but its inclusion makes it difficult to analyze the motion. Nevertheless, if
the projectile does not fly too fast, the neglect of air resistance is a fairly legitimate
approximation.

SWith constant freefall acceleration we mean that we neglect the variation of g with
altitude, which is reasonable if projectile motion takes place near the surface of the earth.

5Tt might be useful for a diligent student to note that the projectile’s acceleration can
also be written in the vector form as

a=g(-j)=-9J
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e With these choises, the set equations developed in the preceding sec-
tion will take the following general form:

a; =0 ay = —g
Uz = Vg0 vy = vyo — gt
T = T0 + vgot Yy =yo + vyt — 3 gt°

vy = vy — 29 (y — o)

Example: Symmetric Projectile Motion

e We now analyze the symmetric projectile motion as an example. We
mean with “symmetric” that the launching and landing points of the
projectile are on the same horizontal line (surface). As in Figure 10,
taking the origin of the xy-plane as the launching point will simplify

a bit the redundant notation”:

z0=0 and yo = 0.

y
Vy :O g
Vxo o
/—> parabolic trajectory
Vxo
v
hmax e
Yo
vy %
Vxo
X
8o
|
horizontal range, R
VoV v

Figure 10: A symmetric projectile motion.

"You can always make the launching take place at the origin with a suitable change of
coordinates.

AtiLiM UNIVERSITY - OPENCOURSEWARE PROJECT - PHYS 101 (H.O.)



18

e Let the projectile be launched with an initial velocity vy which makes

an initial angle 0y with the positive x-axis. We have
Vo = Ux()i + Uy()j

where vy9 and vy are the respective initial speeds in the z- and y-
directions, which are found from Figure 10 as

Uz = Vg cos Oy and vy = Vo sin by

Now there are only two equations that govern the motion on the hor-
izontal x-direction. The first one is

Uy = Vgo = Vo cos By = const.

The constancy of the horizontal velocity is clearly illustrated in Fig-
ure 10, where the speed v,p has been associated everywhere with the
same horizontal vector.

The second equation gives the z-ccordinate of the projectile:
x =z + vpot =0+ (vocosby)t = x=(vgcosby)t

There is nothing special about this result. Since vy and 8y are con-
stant, this equation tells us that the projectile’s x-coordinate increases
linearly with time ¢.

The projectile’s vertical motion can be analyzed by three equations.
The first two are for the vertical speed:

vy =vy0 — gt = v, =vgsinby — gt

Here this result tells us that the vertical speed v,,, which has an initial
positive value v,g = vg sin fy, decreases as time goes on with the con-
stant accelertaion —g, then it becomes zero at its highest point, and
then it reverses its direction toward the earth, that is, its numerical
value becomes negative. The magnitude of this negative value increases
with time at every moment and the projectile hits the ground (in this
special symmetric problem) with the same vertical speed as its initial
vertical speed. These are all markedly shown in Figure 10.
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e The second equation relates the square of the initial vertical speed to
that of the vertical speed at any later time:

v2 =02y — 29 (y — yo) = (vosinfy)® — 2g (y — 0)

= vg = (vosinfp)? — 2gy

e For the projectile’s position in the vertical direction, we have
Y = yo + vyot — 3 gt* = 0+ (vosin o) t — § gt

From the equation for z on the previous page, we obtain the general
expression for time t as

T
z = (vgcosby)t = t=—-——
(vo ) vp cos g

Substituting this into the equation for y above, we get

2
. €T xT
y = (vgsinfp) - ——— — %g <>

v cos by v cos Oy

whence
g 2
= (tanfp)r — | ————— | =
y=( 0) <21}8 cos? 90>

Here the expressions inside the parantheses are all constant so that
this equation is of the form y = ax? 4 bx, which is an equation of
parabola passing through the origin. In other words, the path of a
projectile is a parabolic trajectory.

e At the instant the projectile’s vertical speed v, is zero, it will be in
its maximum height hpyax, as shown in Figure 10. So equating the
equation for v, to zero, we find the time ¢, required for the particle
to reach its maximum height:

Vg sin 6y

vy =0=1vpsinly — glmax = tmax = P

Plugging this result into the equation for y, we obtain

Y= hmax = (UO sin 90) tmax — %gt?nax

vosinfy <vosin90>2
LR L (2R

= (vgsinfy) -
(vo o) p

which leads to the maximum height for this symmetric projectile mo-

tion:
U(Q] sin? 0y

29

hmax -
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e In Figure 10 is also shown the horizontal range R of the projectile

which is the horizontal distance between its launching point (i.e., the
origin) and its landing point whose coordinates are (z,y) = (R,0).
We see that the time ¢ required for the particle to reach this point is
twice the time t;,2x required to reach its maximum height, which we
found above:
2vg sin g

g
Insertion tg into the equation for x results is the particle’s horizontal
range as

tp = 2tmax =

2upsinfy  2vg sin 6 7
z =R = (vgcosby)tr = (vocosby) - YoSPo _ Y% St Yo €08 Yo
9

Since
2 sin 6 cos 8y = sin 26,

we write the expression for R in a more concise form as
2
vy .
R = - sin 26,
g

Don’t forget that this result is valid if and only if we have a symmetric
projectile motion; if the launching and landing points are not on the
same horizontal level, you cannot use this result.

The expression for R above has two important consequences. The
first one is that R is maximum when sin 260y = 1, which amounts to
290 = 90° or (90 = 45°.

The second consequence follows from the expression
sin 20y = 2sin 6y cos g

which tells us that for two complementary initial angles (i.e., angles
which add up to 90°), say 30° and 60°, we have the same sin 26
values, because sin 30° = cos60°, and vice versa. We then draw the
conclusion that two complementary initial angles give rise to the same
horizontal range R for a symmetric projectile motion, as Figure 11
clearly illustrates for 8y = 30° and 60°.
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0, = 60°

X

Figure 11: Two complementary initial angles lead to the same horizontal range R
for a symmetric projectile motion.

Uniform Circular Motion

e As the one in Figure 12, an object orbiting a fixed point at constant
(or, uniform) speed is said to be in uniform circular motion.

Figure 12: An object undergoing a uniform circular motion.

e Although its speed v is constant, the velocity v of the object does
change, because its direction changes continuously, as is seen in Fig-
ure 12. Since acceleration by definition is the change in velocity v in
time, the object does continuously undergo an acceleration.
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e Out of its importance, it is convenient to state first the underlying
properties of uniform circular motion:

1

. Uniform circular motion takes place in a plane, so that it is a 2D
motion.

. The path of the object might also be a circular arc, not necessarily
a complete circle.

. The speed v of the object is always constant around its circular
path.

. The velocity v of the object is everywhere tangent to its circular
path (Figure 12).

. The acceleration a of the object is everywhere perpendicular to
the velocity vector and is always directed to the center of the
circular path. In other words, a is radially inward (Figure 12).
Because of these, the object’s acceleration a = a; is called radial
acceleration, or frequently centripetal acceleration.®

We shall show shortly that the magnitude of this radial acceler-
ation is given by

a=a = —
r

where v is the speed of the object, and r is the radius of its
circular path. You can easily verify that this expression has the
correct unit of acceleration, m/s?.

. If the object’s path is a complete circle, its acceleration vector
has no component along its velocity vector; that is, there is no
tangential acceleration vector: a; = 0.

We call the time T required for the object to complete one rev-
olution as the period of the motion. Since the object travels a
distance of 27 in one revolution, it follows from the definition of
speed that v = 27 /T, or

8The word “centripetal” comes from Latin centrum, meaning “center,” and petere,
meaning “to seek,” so that centripetal literally means “center seeking.”
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e Let’s now prove that acceleration a is directed toward the center of
the circle and that its magnitude is given by a = a, = v?/r. To do
so we will use Figure 13, where the object is at position 1 at time ¢
and at position 2 to at a later time £2. The object’s velocity is vi at 1
and vy at 2, with v; = vy = v; that is, the object’s velocity changes
only its direction while its magnitude remains constant.

Figure 13: Figures for the derivation of a = a, = v?/r.

The average acceleration of the object when it goes from position 1 to
position 2 is
AV vo—vy
v T AT -
We are then required to determine Av = vo — v1, which we have per-
formed graphically in the vector triangle, shown also Figure 13. We
notice immediately that Av is directed toward the center of the circle!
This conclusion is also valid if we let time At be infinitesimally small.

To determine the magnitude of a,,, when At — 0, we write the mag-
nitude of the first part of the preceding equation as

Av
s = A

Figure 13 shows two congruent (or similar) triangles, one on the left
with sides As and r and one on the right with sides Av and v. The
congruency condition gives us

As  Av

v
= or Av = - As
r v r

With this result we have
Av _ vAs/r v As

Gave =N T At 1 At
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We then take the limit of this expression as At — 0; this means that
the distance between positions 1 and 2 is infinitesimally small. In
this limit the ratio As/At approaches the speed v of the object and
the average velocity a.ve appraches the instantaneous acceleration a,
which is the centripetal acceleration a, of the object,

2

I . v As v )
im Ggye =0 =0, = lim —— = — v =
At—0 V8 T A0 At r

which is what we set out to prove.

Key Words, Phrases, and Equations

e Position vector:
r=zi+yj+zk (m)

r=lr|=va?+y>+ 22 (m)

e Displacement vector:

Ar = ro9—r;
(x2 —z1)i+ (2 —y1)j+(2—2)k  (m)
= Azi+Ayj+Azk

e Average velocity:

Ar r1r9—1]
Vavg = Kt = ty — 1, (m/s)

e (Instantaneous) velocity:

Ar dr
= 1' —_— = —
vedmon T g @
V. = Vg+vVvy+v,

= Uxi+vyj+vzk (m/s)
de, dy. dz

= W WL 2By
a Tt T @
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e Speed:

v = /v + v+ v (m/s)

e Average acceleration:

Av Vo — V1 2
e = Ny )

e (Instantaneous) acceleration:

. Av dv 9
=dmar a0
dv  d’r
a=— =-5 (m/s?)

a = ap+tay,ta;
= azitayj+azk
dvg , dvy, dv, 9
= — — k
TR T T (m/5%)
dxz? dy? dz>

= @ttt

a=/a+ a2+ a2 (m/s?)

e Tangential and radial accelerations:

dv 2
= and ar = .

<

Qg

e Motion with constant acceleration:

a = const.
v = vg+at
r = rog+vol+ % at?
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e Projectile motion:

a; =0 Gy = —g
Vg = VUz0 Uy :vyo—gt
T = 20 + Vg0t Yy = yo + vyot — 3 gt*

vy =i — 29 (y — o)

e Parabolic trajectory, maximum altitude hpyax, horizontal range R,
complementary angles.

e Radial (centripetal) acceleration in a uniform circular motion:

v
a=a = —
r
e Period of a uniform circular motion:
2rr
T'=— (s)
v
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