ME 211 Statics and
Strength of Materials

Transverse Shear

Intro d uct | on Transverse loading applied to a beam results
in normal and shearing stresses in
transverse sections.

Distribution of normal and shearing stresses

satisfies
AP = E Fo=[od4=0 M, =[(yr.-z7,)d1=0
:/ ‘ = C Fy=[rgdd=-V M,=[z0,d4=0

F.=[r,d4=0 M_.=[(-yo,)=M
Fig. 6.1 All the stresses on elemental
areas (left) sum to give the resultant

shear V and bending moment /. When shearing stresses are exerted on the
\ /’ vertical faces of an element, equal stresses
" / _ ;\'T must be exerted on the horizontal faces
/r : Longitudinal shearing stresses must exist in
S P o any member subjected to transverse
— loading.

Fig. 6.2 Stress element from section of a
transversely loaded beam.
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Shear on the Horizontal Face of a Beam Element
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T B ‘ — Consider prismatic beam AB
Fig. 6.4 Transversely loaded beam with For equilibrium of beam element
vertical plane symmetric cross section. Z Fx =0=AH + J‘(O.D -0 )dA
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Fig. 6.5 Short segment of beam with stress Q = IydA
element CDD'C’ defined. A
u dM
Mp—-Mqo=—~A=VAx
D C dx
Substituting,
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Fig. 6.6 Forces exerted on element CCD'C'. Ax Il

Shear on the Horizontal Face of a Beam Element

Shear flow,
AH T
q= = 9 = shear flow
. y Ax 1
| [ where
O=[ydd
A
¢ b ‘ ] = first moment of area above |
Fig. 6.7 Short segment of beam with I = J‘ysz
stress element C'D'D”C” defined. dad'

=second moment of full cross section

Same result found for lower area

_AH_VO
Ax I
0+0'=0

= first moment with respect
to neutral axis
AH' = -AH
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Concept Application 6.1 | .on.

Determine the horizontal force per unit
length or shear flow ¢ on the lower
surface of the upper plank.

'<— 100 mm —>|

¥
20 mm .
Y Calculate the corresponding shear
[ force in each nail.
100 mm
20 mm — |~ l

l 20 mm

Fig. 6.8a Composite beam made of
three boards nailed together.

A beam is made of three planks,
nailed together. Knowing that the
spacing between nails is 25 mm and
that the vertical shear in the beam is
V=500 N, determine the shear force
in each nail.

«1).1“0!\\“ ‘«n 100 m —~|

TR o SOLUTION:
0d20m i {wao e Determine the horizontal force per unit
length or shear flow g on the lower

surface of the upper plank.

NA N

A
»‘ ‘« 0.020 m
b) (c)

_ VO _(500N)(120x10"°m?)

Fig. 6.8b-c Cross section with flange area for

computing shear on nail highlighted. Cross section I 16.20x 10'6m4
compound areas for finding entire section moment of
inertia. = 3704I\y
= m
O=dy
=(0.020m x 0.100m)(0.060m )

Calculate the corresponding shear force

_ -6 3

=120x10""m in each nail for a nail spacing of 25
I=:5(0.020m)0.100m)’ mm.

+ 2[5(0.100m)(0.020m)3 F=(0.025m)q = (0.025m)(3704 N/m

+(0.020m x0.100m)(0.060m ]

=16.20x10"°m*




Shearing Stresses in a Beam

Fig. 6.7 Short segment of beam with L he average shearing stress on the horizontal
smaller stress element CDDIC" defined.face of the element is obtained by dividing the
w ol , shearing force AH on the element by the area
&' 7 AA of the face.
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Fig. 6.9 Stress element C'D'D"C ==
showing the shear force on a horizontal It
plane. -
On the upper and lower surfaces of the beam,
F T,= 0. It follows that 7, = 0 on the upper and
lower edges of the transverse sections.
Iy As long as the width of the beam cross section
Fig. 6.11 Beam cross section showing remains small compared to its depth, the shearing
that the shearing stress is zero at the . . . , ,
top and bottom of the beam. stress varies slightly along the line D’,D’,.

Shearing Stresses 7., in Common Types of Beams

For a narrow rectangular beam,

N
o — y
: Eg_clih . Lo _sr(,»?
L_li ; Y 24 2
‘ L'T:%h | T 3V
| B ke Tmax =5,
| ‘ , 24

L/)J f

For American Standard (S-beam)

Fig. 6.13 Geometric Fig. 6.14 Shearing .
terms for rectangular stress distribution on and wide-flange (W-beam) beams
section used to calculate transverse section of
shearing stress. rectangular beam. VQ
Tave =
— y It
A B
D E|[F G ' p_ EWF \ | Tmax = L
[ ”I Aweb

Fig. 6.15 Wide-flange beam. (a) Area for finding first moment of area in flange.
(b) Area for finding first moment of area in web. (c) Shearing stress distribution.




Further Discussion o
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Fig. 6.18 Deformation of cantilever
beam with concentrated load, with a
parabolic shearing stress distribution.

P IP, P,

| o

Fig. 6.19 Cantilever beam with
multiple loads.
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Fig. 6.20 Deformation of cantilever beam
with distributed load.

n Stress Distribution

Consider a narrow rectangular cantilever beam
subjected to load P at its free end:

3P y2 Pxy

C

Shearing V is constant and equal in magnitude to the
load P.

Normal strains and normal stresses are unaffected by
the shearing stresses.
From Saint-Venant’s principle, effects of the load

application mode are negligible except in immediate
vicinity of load application points.

Stress/strain deviations for distributed loads are
negligible for typical beam sections of interest.

Sample Problem 6.2

2.5 kips 1 kip

2.5 kips

<o ;}L:z ﬁ~L3 ft —»Lz ﬁ—‘
|

I 10 ft

SOLUTION:
Develop shear and bending moment

‘ 3.5 in. diagrams. Identify the maximums.
A Y v 5105
TJ Design the beam based on allowable

normal stress.

Check shearing stress.

A timber beam 4B of span 10 ft is to
support the three concentrated loads
shown. Knowing that for the grade of

timber used,
o417 =1800psi 741 =120psi

determine the minimum required depth
d of the beam.

Redesign beam based on allowable
shearing stress, if needed.




2.5 kips 1 kip 251

SOLUTION:
Develop shear and bending moment
diagrams. Identify the maximums.

kips

A Yo YD Ve B
J,“» kips I3 kips .
L i i ' , Vinax = 3kips
2 frt<—3 It 3ft—t<2 ft ) o
v M inax = 7.5kip - ft = 90kip -in
3 kips
©) (1.5)
0.5k
—H 5 kip N
-0.5 kip l_’_
(—=1.5) (—6)
—3 kips
M .
6 kip - ft Lo i
6 kip - ft

Fig. 1 Free-body diagram of beam with shear and

bending-moment diagrams.

X

Fig. 2 Section of beam having
depth d.

—Llpgs
[=bd
I 2
S===1pd
c 6
N
=%(3.51n.)d
=(0.5833in.)d>

Design beam based on allowable normal stress.

M max

s

~ 90x10°Ib-in.
© (0.5833in.)d>
d =9.26in.

Oall =

1800 psi

Check shearing stress.
3V 3 30001b

2 A4 2(3.5in.)(9.26in.)
Since t,; = 120 psi, the depth d = 9.26 in. is not
acceptable and we must redesign the beam on the
basis of the requirement that T, < 120 psi..

=138.8psi.

T

all

Allowable shear stress controls.

b e Ve 3 3000 .
n pst. a = 5Ty 2(3.5 in)(d) d=10.71in.
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Concept Application 6.4
SOLUTION:
Determine the shear force per unit
— . i length along each edge of the upper
- ’e *’ D plank.
| = =t__ 0.75in
g T Based on the spacing between nails,
B determine the shear force in each
y_ o — nail.
A square box beam is constructed from
four planks as shown. Knowing that the
spacing between nails is 1.5 in. and the
beam is subjected to a vertical shear of
magnitude V= 600 Ib, determine the
shearing force in each nail.
Concept Application 6.4 SOLUTION: ,
Determine the shear force per unit
3in length along each edge of the upper
.r\‘\t—" 0,75‘“\' \“’3‘” ”‘ plank
o L—‘E‘ — T 3
U i ‘ L \ =70 (6001b)(4.22in°) L
NA 15in 3in - = . 4 - DT
I " | I 27.42in in
. — s — f= % = 46.15,Lb
Fig. 6.24b-c (b) Geometry for finding first moment of area n .
of top plank. (c) Geometry for finding the moment of inertia = edge force per unit length
of entire cross section.
For the upper plank Based on the spacing between nails,
’ determine the shear force in each
0= Ay =(0.75in.)(3in.)(1.875in.) nail.
4223
=4.22in ‘ F=f(= (46.15&)(1.75in)
For the overall beam cross-section, n
V4 -\ F =80.81
= (4.5in)" -5 3in) 80.81b
=27.42in*






