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CHAPTER 4
Pure Bending

Pure Bending: 
Prismatic members 
subjected to equal 
and opposite 
couples acting in 
the same 
longitudinal plane

Fig. 4.2  (a) Free-body diagram of 
the barbell pictured in the chapter 
opening photo and (b) Free-body 
diagram of the center bar portion 
showing pure bending.
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Other Loading Types

Principle of Superposition:  The normal 
stress due to pure bending may be 
combined with the normal stress due to 
axial loading and shear stress due to 
shear loading to find the complete state 
of stress.

Eccentric Loading:  Axial loading which 
does not pass through section centroid 
produces internal forces equivalent to an 
axial force and a couple

Transverse Loading:  Concentrated or 
distributed transverse load produces 
internal forces equivalent to a shear 
force and a couple

Fig. 4.4  (a) 
Cantilevered 
beam with end 
loading. (b) As 
portion AC
shows, beam is 
not in pure 
bending.

Fig. 4.3  (a) 
Free-body 
diagram of a 
clamp, (b) free-
body diagram of 
the upper 
portion of the 
clamp.

Symmetric Member in Pure Bending

From statics, a couple M consists of two equal and 
opposite forces.

The sum of the components of the forces in any 
direction is zero.

The moment is the same about any axis 
perpendicular to the plane of the couple and 
zero about any axis contained in the plane.

Internal forces in any cross section are equivalent 
to a couple.  The moment of the couple is the 
section bending moment.
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These requirements may be applied to the sums of 
the components and moments of the statically 
indeterminate elementary internal forces.

Fig. 4.5  (a) A member in a state of pure 
bending. (b) Any intermediate portion of AB will 
also be in pure bending.

Fig. 4.6  Summation of the infinitesimal stress elements 
must produce the equivalent pure-bending moment.



Bending Deformations

bends uniformly to form a circular arc

cross-sectional plane passes through arc center and 
remains planar

length of top decreases and length of bottom 
increases

a neutral surface must exist that is parallel to the 
upper and lower surfaces and for which the length 
does not change

stresses and strains are negative (compressive) above 
the neutral plane and positive (tension) below it

Beam with a plane of symmetry in pure 
bending:

member remains symmetric

Fig. 4.9  Member subject to pure bending 
shown in two views. (a) Longitudinal, vertical 
view (plane of symmetry) and (b) Longitudinal, 
horizontal view.

Strain Due to Bending Consider a beam segment of length L.
After deformation, the length of the neutral 
surface remains L.  At other sections,
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Fig. 4.10  Kinematic definitions for pure bending. (a) 
Longitudinal-vertical view and (b) Transverse section at origin.



Stress Due to Bending

For a linearly elastic and 
homogeneous material,

For static equilibrium,
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First moment with respect to 
neutral axis is zero.  Therefore, 
the neutral axis must pass through 
the section centroid.

For static equilibrium,
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Fig. 4.11  Bending stresses vary linearly 
with distance from the neutral axis.

Beam Section Properties
The maximum normal stress due to bending,
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A beam section with a larger section 
modulus will have a lower maximum stress

Consider a rectangular beam cross section,
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Between two beams with the same cross 
sectional area, the beam with the larger depth 
h will be more effective in resisting bending.

Structural steel beams are designed to have a 
large section modulus.

Fig. 4.12  Wood beam cross sections.

Fig. 4.13  Two type of steel beam cross 
sections. (a) S-beam and (b) W-beam



Properties of American Standard Shapes

Deformations in a Transverse Cross Section
Deformation due to bending moment M is quantified 

by the curvature of the neutral surface
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planar when subjected to bending moments, in-
plane deformations are nonzero,
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Fig. 4.16  Deformation of a transverse cross section.



Sample Problem 4.2
SOLUTION:
Based on the cross section geometry, 

calculate the location of the section 
centroid and moment of inertia.
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Apply the elastic flexural formula to 
find the maximum tensile and 
compressive stresses.
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A cast-iron machine part is acted upon by a 3 
kN-m couple.  Knowing E = 165 GPa and 
neglecting the effects of fillets, determine (a) 
the maximum tensile and compressive stresses, 
(b) the radius of curvature.

Sample Problem 4.2 SOLUTION:
Based on the cross section geometry, calculate 
the location of the section centroid and 
moment of inertia.
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Fig. 1  Composite areas for calculating 
centroid.

Fig. 2  Composite sections for calculating 
moment of inertia.



Sample Problem 4.2 Apply the elastic flexural formula to find the
maximum tensile and compressive stresses.
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Fig. 3  Deformed radius of curvature 
is measured to the centroid of the 
cross sections.

Stress Concentrations

Stress concentrations may occur:
in the vicinity of points where the 

loads are applied

I

Mc
Km in the vicinity of abrupt changes in 

cross section

Fig. 4.24  Stress-concentration factors for 
flat bars with fillets under pure bending.

Fig. 4.25  Stress-concentration factors for 
flat bars with grooves (notches) under pure 
bending.

Maximum stress:



Eccentric Axial Loading in a Plane of Symmetry

Result are valid if stresses do not exceed the 
proportional limit, deformations have negligible 
effect on geometry, and stresses are not 
evaluated near points of load application.

Eccentric loading
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Stress due to eccentric loading found by 
superposing the uniform stress due to a centric 
load and linear stress distribution due to a pure 
bending moment
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Fig. 4.39  (a) Member with eccentric loading. 
(b) Free-body diagram of a member with
internal loads at section C.

Fig. 4.41  Stress distribution for eccentric loading is obtained by superposing the axial and pure bending distributions.

Concept Application 4.7

An open-link chain is obtained by bending low-
carbon steel rods into the shape shown.  For 160 
lb load, determine (a) maximum tensile and 
compressive stresses, (b) distance between 
section centroid and neutral axis

SOLUTION:
Find the equivalent centric load and 

bending moment

Superpose the uniform stress due to the 
centric load and the linear stress due 
to the bending moment.

Evaluate the maximum tensile and 
compressive stresses at the inner 
and outer edges, respectively, of the 
superposed stress distribution.

Find the neutral axis by determining 
the location where the normal stress 
is zero.

Fig. 4.43  Open 
chain link under 
loading.



Equivalent centric load and 
bending moment
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Fig. 4.43  Free-body diagram 
for section at C to find axial 
force and moment. Stress at 
section C is superposed axial 
and bending stresses.

Maximum tensile and compressive 
stresses

8475815

8475815

0

0






mc

mt




psi9260t

psi7660c

Neutral axis location

 
inlb105

in10068.3
psi815

0

43

0

0










M

I

A

P
y

I

My

A

P

in0240.00 y
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section C. (d) Bending stress at 
C. (e) Superposition of stresses.
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Sample Problem 4.8 The largest allowable stresses for the cast 
iron link are 30 MPa in tension and 120 
MPa in compression.  Determine the largest 
force P which can be applied to the link.

SOLUTION:
Determine equivalent centric load and 

bending moment.

Evaluate the critical loads for the allowable 
tensile and compressive stresses.

The largest allowable load is the smallest of 
the two critical loads.

From Sample Problem 4.2,
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Superpose the stress due to a centric load 
and the stress due to bending.

Fig. 1  Section geometry to find centroid location.

Sample Problem 4.8 Determine equivalent centric and bending loads.
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Fig. 2  Section dimensions for finding 
location of point D.

Figs. 4  Stress distribution at section C is 
superposition of axial and bending 
distributions acting at centroid.



Unsymmetric Bending Analysis of pure bending has been limited to
members subjected to bending couples 
acting in a plane of symmetry.

Will now consider situations in which the 
bending couples do not act in a plane of 
symmetry.

In general, the neutral axis of the section will 
not coincide with the axis of the couple.

Cannot assume that the member will bend in 
the plane of the couples.

The neutral axis of the cross section coincides 
with the axis of the couple.

Members remain symmetric and bend in the 
plane of symmetry.

Fig. 4.44  
Moment in plane 
of symmetry. Fig. 4.45  Moment 

not in plane of 
symmetry.

Unsymmetric Bending

Wish to determine the conditions under 
which the neutral axis of a cross section 
of arbitrary shape coincides with the 
axis of the couple as shown.

couple vector must be directed along a 
principal centroidal axis
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Fig. 4.46  Section of arbitrary shape where the 
neutral axis coincides with the axis of couple M.



Superposition is applied to determine stresses in 
the most general case of unsymmetric bending.

Superpose the component stress distributions
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Resolve the couple vector into components along the 
principle centroidal axes.
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Fig. 4.49  Unsymmetric bending, with 
bending moment not in a plane of symmetry.

Fig. 4.51  MZ acts in a plane that
includes a principal centroidal axis,
bending the member in the vertical plane.

Fig. 4.52  My acts in a plane that includes a principal 
centroidal axis, bending the member in the horizontal plane.

Fig. 4.54  Neutral axis for
unsymmetric bending.

Concept Application 4.8

A 1600 lb-in couple is applied to a rectangular 
wooden beam in a plane forming an angle of 
30° with the vertical.  Determine (a) the 
maximum stress in the beam, (b) the angle that 
the neutral axis forms with the horizontal 
plane.

SOLUTION:
Resolve the couple vector into 

components along the principle 
centroidal axes and calculate the 
corresponding maximum stresses.
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Combine the stresses from the 
component stress distributions.
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Resolve the couple vector into components and calculate the 
corresponding maximum stresses.
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The largest tensile stress due to the combined loading 
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Fig. 4.55  Cross section with neutral axis 
and stress distribution.



General Case of Eccentric Axial Loading
Consider a straight member subject to equal and 

opposite eccentric forces.

By the principle of superposition, the 
combined stress distribution is
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If the neutral axis lies on the section, it may be 
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The eccentric force is equivalent to the system of 
a centric force (P) and two couples (Mx and 
My).
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Fig. 4.56  Eccentric axial loading. (a) Axial force 
applied away from section centroid. (b) Equivalent 
force-couple system acting at centroid.

Determine the maximum compressive stress 
a) when both forces are applied
b) when only one force is applied

Example 1



Example 1
Equivalent force couple system at C isb) 

Two vertical forces are applied to a beam 
of the cross section shown. Determine 
the maximum tensile and compressive
stresses in portion BC of the beam.
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3

1 30

2 30

3 5

1500 37500

Parallel axis theorem

Example 2



Two vertical forces are applied to a beam of the 
cross section shown. Determine the maximum 
tensile and compressive stresses in portion BC 
of the beam.

35 mm

25 mm

Maximum distance

Moment about the load

(compression)

(tension)

Example 2

The box beam is subjected to the internal moment of 
M=4kN.m which is directed as shown. Determine 
the maximum bending stress developed in the beam 
and the orientation of the neutral axis.

y component of M (-y)
z component of M (+z)

The moments of inertia of the cross section 
about the principal centroidal y and z axes:

Example 3



Maximum stress occurs at corners A and D
Bending stress:

+y compression +z compression

(+) (-)

Example 3

Example 3



Example 3

Example 4

20x60 mm rectangular bar
Two 10 kN forces are applied.
Determine the stress at point A when b = 0

b = 15 mm
b = 25 mm



C
10 kN

b

25mm
10 kN

60 mm

t = 20 mm

P = 20 kN

M

Example 4

Example 4

For b=0 

For b=15 mm 

For b=25 mm 




