
ME210 STRENGTH OF MATERIALS  

CHAPTER 3
Torsion

Torsional Loads on Circular Shafts

Stresses and strains in members of 
circular cross-section are subjected 
to twisting couples or torques

Generator creates an equal and opposite 
torque T’

Shaft transmits the torque to the 
generator

Turbine exerts torque T on the shaft

Fig. 3.2  (a) A generator provides power at a constant revolution per 
minute to a turbine through shaft AB. (b) Free body diagram of shaft AB 
along with the driving and reaction torques on the generator and turbine, 
respectively.
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Net Torque Due to Internal Stresses

   dAdFT 

Net of the internal shearing stresses is an 
internal torque, equal and opposite to the 
applied torque,

Although the net torque due to the shearing 
stresses is known, the distribution of the stresses 
is not.

Unlike the normal stress due to axial loads, the 
distribution of shearing stresses due to torsional 
loads cannot be assumed uniform.

Distribution of shearing stresses is statically 
indeterminate – must consider shaft 
deformations.

Fig. 3.4 (a)Free body diagram of section BC with torque at C 
represented by the representable contributions of small elements 
of area carrying forces dF a radius  from the section center. 
(b) Free-body diagram of section BC having all the small area
elements summed resulting in torque T.

Fig. 3.3 Shaft subject to torques and a section plane at 
C.

Axial Shear Components

Torque applied to shaft produces shearing 
stresses on the faces perpendicular to the 
axis.

Conditions of equilibrium require the existence 
of equal stresses on the faces of the two 
planes containing the axis of the shaft.

The slats slide with respect to each other when 
equal and opposite torques are applied to the 
ends of the shaft.

The existence of the axial shear components is 
demonstrated by considering a shaft made up 
of slats pinned at both ends to disks.

Fig. 3.6  Model of shearing in shaft (a) undeformed; (b) loaded and 
deformed.

Fig. 3.5  Small element in shaft showing how shear stress 
components act.



Shaft Deformations

From observation, the angle of twist of the shaft 
is proportional to the applied torque and to the 
shaft length.

L

T









When subjected to torsion, every cross-section of 
a circular shaft remains plane and undistorted.

Cross-sections for hollow and solid circular 
shafts remain plain and undistorted because a 
circular shaft is axisymmetric.

Cross-sections of noncircular (non-
axisymmetric) shafts are distorted when 
subjected to torsion.Fig. 3.8  Comparison of deformations in 

circular (a) and square (b) shafts.

Fig. 3.7  Shaft with fixed support and line 
AB drawn showing deformation under 
torsion loading: (a) unloaded; (b) 
loaded.

Shearing Strain

Consider an interior section of the shaft.  As a 
torsional load is applied, an element on the 
interior cylinder deforms into a rhombus.  

Shear strain is proportional to twist and radius
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It follows that

Since the ends of the element remain planar, the 
shear strain is equal to angle of twist.

Fig. 3.13  Shearing Strain Kinematic definitions 
for torsion deformation. (a) The angle of 
twist  (b) Undeformed portion of shaft of 
radius  with (c) Deformed portion of the 
shaft having same angle of twist,  and strain, 
angles of twist per unit length, .



Stresses in Elastic Range
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Recall that the sum of the moments of the 
elementary forces exerted on any cross 
section of the shaft must be equal to the 
magnitude T of the torque:
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The results are known as the elastic torsion 
formulas,

Multiplying the previous equation by the shear 
modulus,
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From Hooke’s Law,  G , so

The shearing stress varies linearly with the 
distance  from the axis of the shaft.

Fig. 3.14  Distribution of shearing stresses in a torqued 
shaft; (a) Solid shaft, (b) hollow shaft.

Normal Stresses

Note that all stresses for elements a and c have the 
same magnitude.

Element c is subjected to a tensile stress on two 
faces and compressive stress on the other two. 

Elements with faces parallel and perpendicular 
to the shaft axis are subjected to shear stresses 
only.  Normal stresses, shearing stresses or a 
combination of both may be found for other 
orientations.
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Consider an element at 45o to the shaft axis,

Element a is in pure shear. 

Fig. 3.17  Circular shaft with stress elements at 
different orientations.

Fig. 3.18  Forces on faces at 45° to shaft axis.

Fig. 3.19  Shaft elements with only shear 
stresses or normal stresses.



Torsional Failure Modes

Ductile materials generally fail in shear.  Brittle materials are weaker in 
tension than shear. 

When subjected to torsion, a ductile specimen breaks along a plane of 
maximum shear, i.e., a plane perpendicular to the shaft axis.

When subjected to torsion, a brittle specimen breaks along planes 
perpendicular to the direction in which tension is a maximum, i.e., along 
surfaces at 45o to the shaft axis.

Photo 3.2  Shear failure of shaft subject to torque.

Sample Problem 3.1

Shaft BC is hollow with inner and outer 
diameters of 90 mm and 120 mm, 
respectively.  Shafts AB and CD are solid 
and of diameter d.  For the loading shown, 
determine (a) the minimum and maximum 
shearing stress in shaft BC, (b) the 
required diameter d of shafts AB and CD
if the allowable shearing stress in these 
shafts is 65 MPa.

SOLUTION:
Cut sections through shafts AB and 

BC and perform static 
equilibrium analyses to find 
torque loadings.

Given allowable shearing stress and 
applied torque, invert the elastic 
torsion formula to find the 
required diameter.

Apply elastic torsion formulas to 
find minimum and maximum 
stress on shaft BC.



SOLUTION:
Cut sections through shafts AB and BC

and perform static equilibrium analysis 
to find torque loadings.
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Fig. 1  Free-body diagram for section between A and B. Fig. 2  Free-body diagram for section between B and C.

Apply elastic torsion formulas to 
find minimum and maximum 
stress on shaft BC.
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Given allowable shearing stress and 
applied torque, invert the elastic torsion 
formula to find the required diameter.
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Fig. 3  Shearing stress distribution on cross section. Fig. 4  Free-body diagram of shaft portion AB.



Angle of Twist in Elastic Range
Recall that the angle of twist and maximum shearing 

strain are related,
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In the elastic range, the shearing strain and shear are 
related by Hooke’s Law,
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Equating the expressions for shearing strain and 
solving for the angle of twist,
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If the torsional loading or shaft cross-section 
changes along the length, the angle of rotation is 
found as the sum of segment rotations
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Fig. 3.20  Torque applied to fixed end shaft 
resulting angle of twist .

Fig. 3.21  Shaft with multiple cross-section 
dimensions and multiple loads.

Statically Indeterminate Shafts
Given the shaft dimensions and the applied torque, 

we would like to find the torque reactions at A and 
B.

From a free-body analysis of the shaft,

which is not sufficient to find the end torques. 
The problem is statically indeterminate.
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Divide the shaft into two components which 
must have compatible deformations,

Fig. 3.25  (a) Shaft with central applied 
torque and fixed ends. (b) free-body 
diagram of shaft AB. (c) Free-body 
diagrams for solid and hollow segments.



Sample Problem 3.4

Two solid steel shafts are connected 
by gears.  Knowing that for each shaft 
G = 11.2 x 106 psi and that the 
allowable shearing stress is 8 ksi, 
determine (a) the largest torque T0

that may be applied to the end of shaft 
AB, (b) the corresponding angle 
through which end A of shaft AB
rotates.

SOLUTION:
Apply a static equilibrium analysis on 

the two shafts to find a relationship 
between TCD and T0 .

Find the corresponding angle of twist for 
each shaft and the net angular rotation 
of end A.

Find the maximum allowable torque on 
each shaft – choose the smallest.

Apply a kinematic analysis to relate the 
angular rotations of the gears.

SOLUTION:
Apply a static equilibrium analysis on 

the two shafts to find a relationship 
between TCD and T0 .
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Apply a kinematic analysis to relate the 
angular rotations of the gears.
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Fig. 1  Free-body diagrams of gears B and C.

Fig. 2  Angles of twist for gears B and C.



Find the T0 for the maximum 
allowable torque on each shaft –
choose the smallest.
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Find the corresponding angle of twist for each 
shaft and the net angular rotation of end A.
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Fig. 3  Free-body 
diagram of shaft 
AB.

Fig. 4  Free-body 
diagram of shaft 
CD.

Fig. 5

Design of Transmission Shafts

Principal transmission shaft 
performance specifications are:

- power
- Speed of rotation

Determine torque applied to shaft at 
specified power and speed,
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Find shaft cross-section which will not 
exceed the maximum allowable 
shearing stress,
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Designer must select shaft material 
and dimensions of the cross-
section to meet performance 
specifications without exceeding 
allowable shearing stress. 



Stress Concentrations The derivation of the torsion formula,

assumed a circular shaft with uniform 
cross-section loaded through rigid end 
plates.
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Experimental or numerically determined 
concentration factors are applied as

The use of flange couplings, gears and pulleys 
attached to shafts by keys in keyways, and 
cross-section discontinuities can cause stress 
concentrations

Fig. 3.28 Plot of stress concentration factors 
for fillets in circular shafts.

Fig. 3.26  Coupling of 
shafts using (a) bolted 
flange, (b) slot for 
keyway.




