ME 211 Statics and
Strength of Materials

Chapter 9

Torsion

Torsional Loads on Circular Shafts

Generator

Stresses and strains in members of
circular cross-section are subjected

Turbine

7~ to twisting couples or forques
A |
Turbine exerts torque 7" on the shaft
Shaft transmits the torque to the
generator
P Generator creates an equal and opposite
o) torque 7
~ >

Fig. 3.2 (a) A generator provides power at a constant revolution per
minute to a turbine through shaft AB. (b) Free body diagram of shaft AB
along with the driving and reaction torques on the generator and turbine,

respectively.
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Net Torque Due to Internal Stresses

i Net of the internal shearing stresses is an
s/ B . .
f internal torque, equal and opposite to the
applied torque,

T=[pdF=]p(zdd)

Although the net torque due to the shearing
stresses is known, the distribution of the stresses
is not.

Distribution of shearing stresses is statically
indeterminate — must consider shaft
deformations.

Unlike the normal stress due to axial loads, the
distribution of shearing stresses due to torsional
loads cannot be assumed uniform.

(b)

Fig. 3.4 (a)Free body diagram of section BC with torque at C
represented by the representable contributions of small elements
of area carrying forces dF a radius p from the section center.
(b) Free-body diagram of section BC having all the small area
elements summed resulting in torque T.
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Fig. 3.5 Small element in shaft showing how shear stress
components act.
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Fig. 3.6 Model of shearing in shaft (a) undeformed;

Torque applied to shaft produces shearing

stresses on the faces perpendicular to the
axis.

Conditions of equilibrium require the existence
of equal stresses on the faces of the two
planes containing the axis of the shaft.

The existence of the axial shear components is
demonstrated by considering a shaft made up
of slats pinned at both ends to disks.

The slats slide with respect to each other when

equal and opposite torques are applied to the
ends of the shaft.

loaded and




Shaft Deformations

R From observation, the angle of twist of the shaft
T is proportional to the applied torque and to the
T —n shaft length.
b et ¢ T
Fig. 3.7 Shaft with fixed support and line
AB drawn showing deformation under ¢ oc L
torsion loading: (a) unloaded; (b) . . .
loaded. When subjected to torsion, every cross-section of

a circular shaft remains plane and undistorted.

e Cross-sections for hollow and solid circular
shafts remain plain and undistorted because a
circular shaft is axisymmetric.

Cross-sections of noncircular (non-
axisymmetric) shafts are distorted when
Fig. 3.8 Comparison of deformations in subjected to torsion.

circular (a) and square (b) shafts.

T ——
A | Shearing Strain

Consider an interior section of the shaft. As a
torsional load is applied, an element on the
interior cylinder deforms into a rhombus.

Since the ends of the element remain planar, the
shear strain is equal to angle of twist.

It follows that

Ly=pg¢ or 7:%15

Fig. 3.13 Shearing Strain Kinematic definitions Shear strain is proportional to twist and radius
for torsion deformation. (a) The angle of
twist ¢ (b) Undeformed portion of shaft of
radius p with (c) Deformed portion of the
shaft having same angle of twist, ¢ and strain,
angles of twist per unit length, y.

c
7max :7¢ and 7:£7max
L c




Stresses in Elastic Rang

Fig. 3.14 Distribution of shearing stresses in a torqued
shaft; (a) Solid shaft, (b) hollow shaft.

e Multiplying the previous equation by the shear
modulus,

G7/ = Gymax
C
From Hooke’s Law, 7=G7, so

T="Tmax

C

The shearing stress varies linearly with the
distance p from the axis of the shaft.

Recall that the sum of the moments of the
elementary forces exerted on any cross
section of the shaft must be equal to the
magnitude T of the torque:

T = prdd="m2x] p? gq="max s
C c

The results are known as the elastic torsion
formulas,
Tp

¢
Tmax = — and 7=——

Normal Stresses

Fig. 3.17 Circular shaft with stress elements at
different orientations.

(a) b)

Fig. 3.18 Forces on faces at 45° to shaft axis.
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Fig. 3.19 Shaft elements with only shear
stresses or normal stresses.

Elements with faces parallel and perpendicular
to the shaft axis are subjected to shear stresses
only. Normal stresses, shearing stresses or a
combination of both may be found for other
orientations.

Consider an element at 45° to the shaft axis,
F= Z(rmxAO)cos45° = Trax Ao V2
maxAO[
A2

Element a is in pure shear.

Oyso == = Trax

Element c is subjected to a tensile stress on two
faces and compressive stress on the other two.

Note that all stresses for elements a and ¢ have the
same magnitude.




Torsional Failure Modes
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(@) Ductile failure () Brittle failure
@ John DeWolf

Photo 3.2 Shear failure of shaft subject to torque.

Ductile materials generally fail in shear. Brittle materials are weaker in
tension than shear.

When subjected to torsion, a ductile specimen breaks along a plane of
maximum shear, i.e., a plane perpendicular to the shaft axis.

When subjected to torsion, a brittle specimen breaks along planes
perpendicular to the direction in which tension is a maximum, i.e., along
surfaces at 45° to the shaft axis.

Sample Problem 3.1 SOLUTION:
09m Cut sections through shafts 4B and
BC and perform static

equilibrium analyses to find
torque loadings.

Apply elastic torsion formulas to
find minimum and maximum
stress on shaft BC.

I,=6kN-m
Shaft BC is hollow with inner and outer
diameters of 90 mm and 120 mm,
respectively. Shafts AB and CD are solid
and of diameter d. For the loading shown,
determine (a) the minimum and maximum
shearing stress in shaft BC, (b) the
required diameter d of shafts AB and CD
if the allowable shearing stress in these
shafts is 65 MPa

Given allowable shearing stress and
applied torque, invert the elastic
torsion formula to find the
required diameter.




SOLUTION:

to find torque loadings.

T4 =6kN-m

SM,=0=(6kN-m)-T,p
TAB =6kN~m=TCD

Fig. 1 Free-body diagram for section between A and B.

Cut sections through shafts AB and BC
and perform static equilibrium analysis

T,=6kN.m

—

Fig. 2 Free-body diagram for section between B and C

SM,=0=(6kN-m)+(14kN-m)- Tz
TBC =20kN-m

Apply elastic torsion formulas to
find minimum and maximum
stress on shaft BC.

‘\\-\/q =45 mm

T\

/_/"\ct\ ¢y = 60 mm

Fig. 3 Shearing stress distribution on cross section.

J = %(Cg—cf)—

z 4 4
Z1(0.060 )* - (0.045

2 [( ) - ( ) ]
=13.92x10 ®m*

Tgeep,  (20kN-m)0.060m)
Tmax =72 = =

J 13.92x10"°m?
=86.2MPa

Tmin — a Tmin

_ 45mm

Toux €2 86.2MPa  60mm

Given allowable shearing stress and

applied torque, invert the elastic torsion
formula to find the required diameter.

%
N/ )
U
B
Fig. 4 Free-body diagram of shaft portion AB.
Tc Tc 6kN-m
Tmax = ;=5  65MPa=-""—
Z¢ Ze
2 2

c=389%x10m

Tinin = 64.7MPa

Tmax = 86.2MPa
Timin = 64.7MPa

6kN - m

d=2c¢=77.8mm




Angle of Twist in Elastic Range

Recall that the angle of twist and maximum shearing

Fig. 3.20 Torque applied to fixed end shaft
resulting angle of twist ¢.

T,
Fig. 3.21 Shaft with multiple cross-section
dimensions and multiple loads.

strain are related,
4
Vmax =

L
In the elastic range, the shearing strain and shear are
related by Hooke’s Law,
_Tmax _ TC
G JG
Equating the expressions for shearing strain and
solving for the angle of twist,
TL
e

If the torsional loading or shaft cross-section
changes along the length, the angle of rotation is
found as the sum of segment rotations

T:L;
g=3-+"
i JiG;

7 max

Statically Indeterminate Shafts

5in.
' T

Fig. 3.25 (a) Shaft with central applied
torque and fixed ends. (b) free-body
diagram of shaft AB. (c) Free—body

diagrams for solid and hollow segments.

Copyright © MeGraw. Hill Education. Permission requred for eprocucten oraispiny. (J1VEN the shaft dimensions and the apphed torque’

we would like to find the torque reactions at 4 and
B.

From a free-body analysis of the shaft,
TA +TB =901b-ft

which is not sufficient to find the end torques.
The problem is statically indeterminate.

Divide the shaft into two components which
must have compatible deformations,

Tyl TgL
b=h+dy=—1 0T =0

S,
JiG  J,G

Tp=-122
B Ly
Substitute into the original equilibrium equation,

TA +MTA =901b-ft
LyJy




Sample Problem 3.4

B

0.875i1|.V
Two solid steel shafts are connected
by gears. Knowing that for each shaft
G =11.2 x 10 psi and that the
allowable shearing stress is 8 ksi,
determine (a) the largest torque 7},
that may be applied to the end of shaft
AB, (b) the corresponding angle
through which end 4 of shaft 4B
rotates.

SOLUTION:

Apply a static equilibrium analysis on
the two shafts to find a relationship
between T, and 7).

Apply a kinematic analysis to relate the
angular rotations of the gears.

Find the maximum allowable torque on
each shaft — choose the smallest.

Find the corresponding angle of twist for
each shaft and the net angular rotation
ofend 4.

SOLUTION:

Apply a static equilibrium analysis on
the two shafts to find a relationship
between T, and 7).

I(‘I)

I =T,
¢ J“ y L/B
q /JL I“ \%
re = 2.45;4 rg = 0.875in.

Fig. 1 Free-body diagrams of gears B and C.
> Mg =0=F(0.875in.)- T
S My =0=F(245in.)-Tep

Apply a kinematic analysis to relate the
angular rotations of the gears.

1 \ &
I~
Z\’ \ gD
\
_. rg = 0.8751in.
re =2451in. N

Fig. 2 Angles of twist for gears B and C.
r8#p = rcdc

’
¢5=Cdc =
B

0.875m. 7€




Find the T, for the maximum
allowable torque on each shaft —
choose the smallest.

~Tas = T
¢=0375in. Y

| / M \Ten
(de?”, DY
\ & o4 \

A

‘/ c=05in. ‘

Fig. 3 Free-body A4

. \ (4GF in
diagram of shaft o\ ‘f
AB. M
Fig. 4 Free-body

diagram of shaft

CD.
Tax = 4B 8000psi = M
4B 5(0.3751n,)
Ty = 6631b-in.

Tmax _ TCDC 8000[)8‘1 _ 28T0(0511’l)
Jep Z(0.5in.)*

Ty =5611b-in

Ty = 5611b-in.

Find the corresponding angle of twist for each

shaft and the net angular rotation of end 4.

¢, =1048°

TypL _
J 418G

(5611b-in.)(24in.)
0.375in.)*11.2x10%psi
( Xl p

Pa/8 = P
2
=0.387rad = 2.22°

Tepl  2.8(5611b-in.)(24in.)
JepG Z(0.5in ) (11.2x10%psi)

$c/p =

=0.514rad = 2.95°
¢ =28¢c = 2.8(2.95"): 8.26°
$u =5+ a5 =826°+2.22°

$a=1048"

Design of Transmission Shafts

Principal transmission shaft
performance specifications are:
- power
- Speed of rotation

Designer must select shaft material
and dimensions of the cross-
section to meet performance
specifications without exceeding
allowable shearing stress.

Determine torque applied to shaft at
specified power and speed,

P=Tw=21T
_P_P
o 27

Find shaft cross-section which will not
exceed the maximum allowable
shearing stress,

Tc
Tmax = 7
I 2= (solid shafts)
c 2 Tmax
J_ 7 (cg _ Cl4 ): (hollow shafts)
(&) 26‘2 Tmax




Stress Concentrations

T Fig. 3.26 Coupling of
\
K N shafts using (a) bolted
(@) flange, (b) slot for
keyway.
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Fig. 3.28 Plot of stress concentration factors
for fillets in circular shafts.

The derivation of the torsion formula,
Tmax = e
J
assumed a circular shaft with uniform
cross-section loaded through rigid end
plates.

The use of flange couplings, gears and pulleys
attached to shafts by keys in keyways, and
cross-section discontinuities can cause stress
concentrations

Experimental or numerically determined
concentration factors are applied as
Tc
Tmax=K—

J






