SE345

Atihm University
Dept of Software Engineering

Asst. Prof. Dr. Aylin AKCA-OKAN

04/12/2025 A. Akca-Okan



Atilhm University

Tentative Course Schedule

WKk Subjects

Midterm

© 0N UAWNE

Introduction to Software Quality and Assurance
Introduction to Software Quality and Assurance
Software Quality Factors

Overview of Components of the SQA System
Overview of Components of the SQA System
Integrating Quality Activities in Project Life Cycle

Reviews, Inspection and Audits
Software Quality Metrics
1O Procedures and Work Instructions

11. Presentations

12. Software Change Process
13. SOA Process Standards

04/12/2025

A. Akca-Okan

Chapter

Chapter1
Chapter1
Chapter 3
Chapter 4
Chapter 4
Chapter 7

Chapter 8
Chapter 21
Chapter 14

Chapter 18
Chapter 23

SE345



Atihm University SE345

(Sommerville; http:// www.utdallas.edu/~chung/SE3354Honors/IEEInaugural.pdf)

Measurement of products or systems is absolutely fundamental to the
engineering process.

| am convinced that measurement as practised in other engineering disciplines is
IMPOSSIBLE for software engineering

.. collecting metrics is too hard ¢ tocharacterise
. It's too time-consuming ¢ toevaluate

. It's too political ¢ topredict

. Itwon't prove anything ¢ toimprove

04/12/2025 A. Akca-Okan 3


http://www.utdallas.edu/~chung/SE3354Honors/IEEInaugural.pdf

Atilm University SE345

What to measure

Process
Measure the efficacy of processes. What works, what doesn't.

Project
Assess the status of projects. Track risk. ldentify problem areas. Adjust workflow.

Product
Measure predefined product attributes (generally related to ISO9126 Software Characteristics)



Atilim University

Measurement, Measures, Metrics

Measurement

Is the act of obtaining a measure

04/12/2025

A. Akca-Okan

Fad

Measure

provides a quantitative
indication of the size of some
product or process attribute,
E.g., Number of errors

A measure provides a
quantitative indication of the
extent, amount, dimension,
capacity, or size of some
attribute of a product or process

An example measure might be
five centimetres.

Metric

IS a quantitative measure of the
degree to which a system,
component, or process
possesses a given attribute
(IEEE Software Engineering
Standards 1993) : Software
Quality - E.g., Number of errors
found per person hours
expended

An example of a metric would be
that there were only two user-
discovered errors in the first 18
months of operation.

SE345

Measurement = how you obtained the number
Measure = raw number

Metric = calculation using the number
Indicator = metric that signals performance

Indicator

IS @ metric or combination of
metrics that provide insight into
the software process, a software
project, or the product itself

In software terms, an indicator
may be a substantial increase in
the number of defects found in
the most recent release of code.



Atilim University SE345

Theory of Measurement

== Static measures

- derived from examination of the software itself, e.g.,
source code.

== dynamic measures

Measurement is a mapping from the - derived from observations of the execution of the
software

empirical, observable world to the formal,

relational world. = direct measures

- size, effort, schedule, and quality

=== INdirect measures

* measures derived from direct measures, e.g.,
productivity (amount/unit of time)

04/12/2025 A. Akca-Okan 6



Atilm University

Measurement Process
780

04/12/2025

A. Akca-Okan

\\\\\\\
RE

Y

(4
| ?TJ\J\{\ N&

SE345

Formulation. The derivation of software
measures and metrics appropriate for the
representation of the software that is being
considered.

Collection. The mechanism used to accumulate
data required to derive the formulated metrics.

Analysis. The computation of metrics and the
application of mathematical tools.

Interpretation. The evaluation of metrics results
In an effort to gain insight into the quality of the
representation.

Feedback. Recommendations derived from the
interpretation of product metrics transmitted to
the software team.



Atilim University

Measures

Program Size Measures

« SLOC -source lines of code OR Function Point

 Line of code is typically correlated with effort. Boehm, Walston-Felix,
and Halstead all show Effort as a function of lines of code.

Effort Measures

e Most common units of measurement of effort are labour-month, staff
week, staff-month, person-year.

Attribute Class

Type of labour

hour information
employment class

labour class

Activity
product-level functions

04/12/2025

Describes and distinguishes

direct and indirect labor: labor costs that can be charged
directly to the project or contract, and those that cannot

regular or overtime work, and salaried or hourly workers

regular company employees, whether full-time or part-time,
and employees brought in to work on a specific project task,
such as consultants and subcontractors

workers by the types of work they do: managers at various
levels, analysts, designers, programmers, documentation
specialists, support staff, etc.

software development activities and maintenance activities

functions of software development, such as design, coding,
testing, and documentation; organised by major functional
element, by customer release, and by system

A. Akca-Okan

Quality Measures

SE345

Two fundamental ideas related to quality are freedom from defect and suitability
for use. This suggests quality measures should be counts of defects and problem

reports.

Attribute Class
problem status

problem type

uniqueness
criticality
urgency

finding activity

finding mode

Performance Measures

Describes and distinguishes

points in the problem analysis and correction process: open or closed;
recognized, evaluated, or resolved

software defect or other kind of problem (hardware, operating system, user
mistake, operations mistake, new requirement, enhancement); for a software
defect, whether it is a defect in requirements, design, code, operational
document, test case, etc.

new and unique defect, or a duplicate of another reported defect
degree of disruption to a user when the problem is encountered

degree of importance given to the evaluation, resolution, and closure of the
problem

the activity that uncovered the problem, such as synthesis, inspection, formal
review, testing, customer use

operational or non-operational environment where defect was found

«  Two common performance measures:

— response time - how long it takes to accomplish a task
— throughput - tasks can be completed in a unit of time

Reliability Measures

« Software reliability cannot be measured directly. It is generally computed from
other measures of the behavior of the software.

— Mean Time Between Failures
— Mean Time to Repair

— Availability



Atilim University 1. Facilitate management control, planning and managerial
intervention.
Based on:

* Deviations of actual from planned performance.

Deviations of actual timetable and budget performance from
planned.

The Software Quality Metrics Framework

2. ldentify situations for development or maintenance process
improvement (preventive or corrective actions). Based on:

 Accumulation of metrics information regarding the performance
of teams, units, etc.

\/ Quality requirements that the software product must meet

— Quality factors - Management-oriented attributes of software that contribute to its quality

Qa Quality subfactors - Decompositions of a quality factor to its technical components

|||l Metrics - quantitative measures of the degree to which given attributes (factors) are present

04/12/2025 A. Akca-Okan 9



Atilim University SE345

Software Quality Metrics

Desired attributes of Metrics (Ejiogu, 1991)
— Simple and computable
— Empirical and intuitively persuasive
— Consistent and objective
— Consistent in the use of units and dimensions

— Independent of programming language, so
directed at models (analysis, design, test, etc.) or
structure of program

— Effective mechanism for quality feedback

04/12/2025 A. Akca-Okan 10



Atihm University SE345

Subfactors &
Direct Metrics

f ==
f ==
Understandability - The Ease of learning - The Operability - The degree Communicativeness -
amount of effort degree to which user to which the effort The degree to which
required to understand effort required to learn required to perform an software is designed in
software how to use the software operation is minimized accordance with the
IS minimized psychological

characteristics of users

Understanding Ease of learning Operability Communicativeness
* Learning time: Time for « Learning time: Time for * Operation time: Time « Human factors: Number
new user to gain basic new user to learn how to required for a user to of negative comments
understanding of perform basic functions perform operation(s) of from new users
features of the software of the software the software regarding ergonomics,

human factors, etc.

04/12/2025 A. Akca-Okan 11



Atihm University SE345

Software Quality Metrics

correctness - defects per KLOC

- mean time to change (MTTC) the time it takes to analyze the change
request, design an appropriate modification, implement the change,

maintainability test it, and distribute the change to all users
- spoilage = (cost of change / total cost of system)

- threat = probability of attack (that causes failure)

integrity - security = probability attack is repelled
- Integrity =X [1 - threat * (1 - security)]

04/12/2025 A. Akca-Okan 12



Atilm University

Types of Metrics (different classifications)

* Product Metrics Analysis Metrics
- Process Metrics - COCOMO
- Project Metrics * Function/Feature Points
Design Metrics
* Coupling
- Cohesion

- Structural Complexity

- Data Complexity

- System Complexity
Coding Metrics

- Lines of Code

« McCabe's Cyclomatic
Complexity

04/12/2025 A. Akca-Okan

SE345

Classification by subjects of
measurements

 Quality
- Timetable

- Effectiveness (of error
removal and maintenance
services)

- Productivity

13



Atihm University

Types of Metrics - 1st Categorisation

SE345

Product Metrics
focus on the quality of deliverables
measures of analysis model
complexity of the design

= Iinternal algorithmic
complexity

= architectural complexity

= data flow complexity
code measures (e.g., Halstead)
measures of process effectiveness

= e.g., defect removal efficiency

Process Metrics

majority focus on quality achieved
as a consequence of a repeatable or
managed process

statistical SQA data
= error categorisation & analysis
defect removal efficiency

= propagation from phase to
phase

reuse data

Project Metrics
Effort/time per SE task
Errors uncovered per review hour

Scheduled vs. actual milestone
dates

Changes (number) and their
characteristics

Distribution of effort on SE tasks

04/12/2025 A. Akca-Okan

14




Atilim University SE345

Product Metrics



SE345

Atilm University

Product Metrics

& - R —— T ™
B S S -~ 858 2 55 "8 —855 -5 -2880c00c0~~0~0~0O0O

S OE T OO e O F00 0D B e RS O W OO0 r-——Or——0OC

_.|
o
O = 9w~ -S> -~ mAES e W~ O

RBT T LSRR R R R R R 2 © © =

- 0D O

“FI=T"F AT~ KRR~ F AT AT TI=T-FF=F ¥ ¥-F 1 1 22 SRl

e O — — O OO OO0 ~0O0 000 O RO =0 —O0O 00 —r—r

BP0 PCCF RO OF R R o000 —~——00—~0—00O~

'0- O O » O - 90 0

B O rF BB rrrrB B8 rrrrO bR rOrBooRRRBEBRBRP O —0CO00O —r-

D = O OO 0O0O0O—O0O00 D0 &0 Q0

- - - o i - ST 1.3 8 131 1T 2.0 4L b
SO r OO0 rrrO 00 rrmrrO00rmrerOrO0 0 r OO0 O OO0 —— OO —

; . = 5 9
CO~Orrr—r00—
EEERE D v~ v~ O — O —~ O 00O rmrmrrmrO0O0 OO0 0w
2 -9

- O . -1k - a5 B = £ »

—FO0 00~ r~O0~0~00 00000~ 00~0r—0O0~
e B e N e Il e B e Ne No e Ne B

PR oo - T S o EE TR B R EcO——~000OO—

OEE OO~ ~00=0~00*0*® 0 000~ ~Or~~00—0O+—+———O0O-

e i ol elel Neoll N N N Jelelelelel

RS O cr e O rreP OO e OSSR T e OO0 — 0O — =«

O =~ OO OO0 rmrrmr—O0O0 00— 0 0 0w

RSO O v — — OO~ O O00 ™0+ OKO il OO0 rmr— O ——0C

e O O~ — O OO OO0~ 0 0000w rO—0D 000 ™—rvr—r

o0

-

.._w
& Q
- SM
Q c o)
g 7 =
= mmv
-
o O w + 0
QO O T - O c +
= 5 O o 0 S5 £
o0 > ﬂm e 2 ) Y— 4=
C = O o > © O
= ) ()]
— D = = 55 = e
- T o0 O Q =
s . 5233 % 3 8
© @) 0
c 2 = 9 5 S O i
> o ®© © = @ @©
o = +¥ « L B 37 IR
-+ O m QO o Q m © O
QO w 3 £ o = = pn v 3 3
Y - @) — © QO O @) @)
O — o o »vw 9 — 9D = v %
T % © 0 & 2 O 5 3 v o
“— ] 4= W = I3 > 9© &g W W
O._LOOMO.._uomuu
Q C QO et = D 4= 4= 4=
>~ © W = 53 O 3 §© © o o©
+~ . © O O - G G
5 O & ¢ » © £ O O O O
cC O - + +« O o N o o o
S © 0 o o £ O »w g g ¢
orbnwarbarbarbummo%ouuu
o £ 0 &2 0 &£ o © = = =
E 3 EEES © 08 8 8 8
S5 Q@ ) ) > 0O > > O O O
Z © Z2 Z2 Z - << << +— = -
o o o o o o o o o o

* Total number of bugs found as a result of validation testing

Productivity, as measured by KLOC per person-hour

16

A. Akca-Okan

04/12/2025



Atilm

University SE345

The function point method

» The function point approach for software sizing was The function point estimation process:
invented by Allan Albrechtin 1379 » Stage 1: Compute crude function points (CFP).
» The measure of Albrecht - Function Point Analysis » Stage 2: Compute the relative complexity
(FPA) - 1s well known because of its great adjustment factor (RCAF) for the project. RCAF
advantages: varies between 0 and 70.
*Independent of programming language and » Stage 3: Compute the number of function points
technology. (FP):
- Comprehensible for client and user. FP = CFP x (0.65 + 0.01 x RCAF)

04/12/2025

Applicable at early phase of software life cycle.

Main advantages
« Estimates can be prepared at the pre-project stage.

« Based on requirement specification documents (not specific dependent on development tools or
programming languages), the method’s reliability is relatively high.

Main disadvantages

 FPresults depend on the counting instruction manual.

 Estimates based on detailed requirements specifications, which are not always available.

 The entire process requires an experienced function point team and substantial resources.

 The evaluations required result in subjective results.

« Successful applications are related to data processing. The method cannot yet be universally applied. 17



Atilm University SE345

Crude function points (CFP) Calculation

The method relates to the following five types of

software system components: Complexity level Total
Software CFP
« Number of user inputs - distinct input applications, system Simple average complex
not including inputs for online queries. components
Count | Weight | Points | Count | Weight | Points | Count | Weight | Points
.«  Number of user outputs - distinct output applications Factor Factor Factor
such as batch processed reports, lists, customer A B = D E = G H =
invoices and error messages (not including online AxB DxE GxH
queries). User inputs 3 4 6
« Number of user online queries - distinct online
applications, where output may be in the form of a AR L & 2 u
printout or screen display. User online queries 3 4 6
« Number of logical files - files that deal with a distinct ——
type of data and may be grouped in a database. Logical files 7 10 15
« Number of external interfaces - computer-readable Externalinterfaces S 7 10
output or inputs transmitted through data
C . : Total CFP
communication, on CD, diskette, etc.

The function point method applies weight factors to

each component according to its complexity.
04/12/2025 A. Akca-Okan 18



Atilm University SE345

Calculating the relative complexity adjustment factor (RCAF)

 The relative complexity adjustment No | Subject Grade
factor (RCAF) summarizes the 1 | Requirement for reliable backup and recovery 012345
complexity characteristics of the 2 | Requirement for data communication 012345
software Sygtem and varies 3 Extent of distributed processing 012345
between O and 70. 4 Performance requirements 012345
_ 5 Expected operational environment 012345
) ASSIgn grades (O to 5) tothe 14 6 Extent of online data entries 012345
SUbjeCtS that SUbStantia”y atfect the 7 Extent of multi-screen or multi-operation online data input 012345
reqUired development efforts 8 Extent of online updating of master files 012345
(EXtent of distributed processing, 9 Extent of complex inputs, outputs, online queries and files 012345
performance requirements ...). 10 | Extent of complex data processing 012345
« RCAF is the sum of grades regarding 11 Extent that currently developed code can be designed for reuse 012345
the 14 subjects. 12 Extent of conversion and installation included in the design 012345
13 Extent of multiple installations in an organization and variety of customer 01234
organizations
14 Extent of change and focus on ease of use 01234
Total = RCAF

04/12/2025 A. Akca-Okan 19



Atilm University SE345

Function Point Method

« Attend-Master is a basic employee attendance system that is
planned to serve small to medium-sized businesses employing 10-
100 employees.

« An example: The Attend Master

 The system is planned to have interfaces to the company’s other
software packages: Human-Master, which serves human resources
units, and Wage-Master, which serves the wages units.

« Attend-Master is planned to produce several reports and online
queries.

04/12/2025 A. Akca-Okan 20



Atilim University

SE345

The ATTEND MASTER - Data Flow Diagram

INPUT

Employees
(attendance
clock)

Attendance
records

Employee
attendance query

OUTPUT

Processing
attendance

Human
resources
unit

records

Attendance
warning letter

r

Daily
attendance query

r

Employees

Human-
Master
system

04/12/2025

Manual
special
attendance
records

records

Employee

Employee

Daily attendance
exceptions query

r

attendance file

Monthly
attendance report

r

Processing
reports and

=/

Monthly attendance

exceptions report

r

queries

Employee files

Processing
employees’

Monthly attendance

lists for wages

Human
resources
unit

input records

A. Akca-Okan

Wage-
Master
system

Analysis of the software system as presented in the
DFD summarises the number of various components:

« Number of user inputs - 2

« Number of user outputs - 3

« Number of user online queries - 3
« Number of logical files - 2

« Number of external interfaces - 2.

The degree of complexity (simple, average or
complex) was evaluated for each component.

21



Atilm University SE345

The ATTEND MASTER CFP calculation form

Complexity level

Simple average complex Total
Software CFP
system Count Weight Points | Count LG Points | Count Weight Points
components Factor Factor Factor

C= F= I=
= = AxB 2 E DxE G = GxH

User inputs 1 3 3 e q 1 6 6 9
User outputs --- 4 --- 2 5 10 1 7 7 17
AP @I 1 3 3 1 4 4 1 6 6 13
queries
Logical files 1 7 7 e 10 1 15 15 22
23] 5 7 2 10 20 20
interfaces
Total CFP 81

04/12/2025 A. Akca-Okan 22



Atilm University SE345

Calculation of RCAF I R wrece
1 Requirement for reliable backup and recovery 012345
2 Requirement for data communication 012345
Relative CompleXIty 3 Extent of distributed processing 012345
Adjustment FaCtOr 4 | Performance requirements 012345
5 Expected operational environment 012345
6 Extent of online data entries 012345
/ Extent of multi-screen or multi-operation online data input 012345
8 Extent of online updating of master files 012345
9 Extent of complex inputs, outputs, online queries and files 012345
10 | Extent of complex data processing 012345
11 Extent that currently developed code can be desighed for reuse 012345
12 | Extent of conversion and installation included in the design 012345
13 | Extent of multiple installations in an organization and variety of customer 012345
organizations
14 | Extent of change and focus on ease of use 012 34
Total = RCAF 41

04/12/2025 A. Akca-Okan 23



Atilm University SE345

The ATTEND MASTER - function points calculation

FP=CFP x(0.65 + 0.01 x RCAF)
FP =81 x(0.65 + 0.01 x 41)

= 85.86
Converting NFP to KLOC
 The estimates for the average number of lines of For C++:
code (LOC) required for programming a function KLOC = (85 86 * 64)/1000 =5.495 KLOC
point are the following: : )
Programming language/development tool Average LOC
C 128
Ca++ 64
Visual Basic 32
Power Builder 16
SQL 12

04/12/2025 A. Akca-Okan 24




Atihm University SE345

Extended function point metrics
Feature Points, UCPs...

« The function point metric was initially designed to be
applied to business information systems applications.

« The data dimension was emphasised to the exclusion of

the functional and behavioural (control) dimensions. UCPs

« UCPs are based on the number of actors,
scenarios, and various technical and
environmental factors in the use case diagram.

« The function point measure was inadequate for many
engineering and embedded systems

- Feature points: A superset of the function point, designed » The UCP equation is based on four variables:

for applications in which algorithmic complexity is high — Technical complexity factor (TCF)
(real-time, process control, embedded software — Environment complexity factor (ECF)
applications).

— Unadjusted use case points (UUCP)

- UCPs: Use case points (UCPs) allow the estimation of an _ Productivity factor (PF)
application’s size and effort from its use cases. UCPs are
based on the number of actors, scenarios, and various

technical and environmental factors in the use case
diagram. UCP =TCP *ECF * UUCP * PF

which yield the equation:

04/12/2025 A. Akca-Okan 25



Atim University

SE345

Product Metrics

Refer to Operational Phase
Rely on Performance Reports during a specified period (6-12 months)
Comparison between successive years or different units

« H
¢ H
¢ H

04/12/2025

e

e

e

P
P
P

Desk Quality metrics

Desk Productivity metrics

Desk Effectiveness metrics

A. Akca-Okan

Corrective maintenance quality metrics

Corrective maintenance productivity and effectiveness metrics

Product Metrics |l
Categories

HD quality metrics

HD productivity metrics

HD effectiveness metrics

Corrective maintenance
quality metrics

Corrective maintenance

e PrOductivity and effectiveness

metrics

HD calls density metrics -
=4 measured by the number of
calls

HD calls severity metrics - the
== Severity of the HD issues
raised

HD success metrics - the level

==of success in responding to HD
calls

Software system failures
density metrics

Software system failures
severity metrics

Failures of maintenance
services metrics

Software system availability

metrics

26



Atilm University

Help desk (HD) Quality Metrics

 HD calls density metrics - measured by the number of calls.

« HD calls severity metrics - the severity of the HD issues raised. wyyc — weighted HD

SE345

Code |Name Calculation Formula
ASHC | Average severity of HD calls ASHC = WHYC
NHYC

NHYC = the number of HD calls during a year of service.

calls received during one year of service.

« HD success metrics - the level of success in responding to HD calls.

Code Name Calculation Formula
HDD |HD calls density HDD = Y ¢
KLMC
WHDD | Weighted HD calls density WHYC = WHYC
KLMC
Weighted HD calls per ~ WHYC
WHDE | ¢ inction point WHDF=———5

NHYC = the number of HD calls during a year of service.
KLMC = Thousands of lines of maintained software code.
WHYC = weighted HD calls received during one year of service.

NMFP = number of function points to be maintained.

04/12/2025

A. Akca-Okan

Code Name Calculation Formula
HDS HD service success HDS — NHYOT
NHYC

NHYNOT = Number of yearly HD calls completed on time during one year of service.
NHYC = the number of HD calls during a year of service.

Code | Name Calculation Formula
HDP | HD Productivity HDP— HDYH
KLNC
FHDP | Function Point HD Productivity ranp - BPYH
NMFP
HDE | HD effectiveness HDE — HDYH
NHYC

HDYH = Total yearly working hours invested in HD servicing of the software system.
KLMC = Thousands of lines of maintained software code.
NMFP = number of function points to be maintained.

NHYC = the number of HD calls during a year of service. 27



Atilm University

Corrective Maintenance Quality Metrics

« Software system failures density metrics
« Software system failures severity metrics
 Failures of maintenance services metrics
« Software system availability metrics

Code Name Calculation Formula
SSFD | Software System Failure SSFD = YF
Density KLMC
WSSFD | Weighted Software WEFFED = F_
System Failure Density KLMC
WSSFF | Weighted Software System L
Failures per Function point NMFP

NYF = number of software failures detected during a year of maintenance service.
WYF = weighted number of yearly software failures detected during one year of

maintenance service.
NMFP = number of function points designated for the maintained software.
KLMC = Thousands of lines of maintained software code.

Code Name Calculation Formula
Average Severity of _ WYF
ASSSK Software System Failures ASSSF = NYF

NYF = number of software failures detected during a year of maintenance service.
Wl%g%!gigﬂéed number of ye:ﬁ"lﬁ‘ $6AWAR Yailures detected during one year.

SE345

Code Name Calculation Formula
Maintenance Repeated RepYF
MRepk repair Failure metric - MRepk = — =+

NYF = number of software failures detected during a year of maintenance

service.

RepYF = Number of repeated software failure calls (service failures).

Code Name Calculation Formula
FA Full Availability FA = oo - NYPH
NYSerH
VitA | Vital Availability VitA = e - NYVIrH
NYSerH
TUA  |Total Unavailability TUA= i’
NYSer

NYSerH = Number of hours software system is in service during one year.
NYFH = Number of hours where at least one function is unavailable (failed) during one vear,

including total failure of the sofiware system.

NYVitFH = Number of hours when at least one vital function is unavailable (failed) during
one year, including total failure of the software system.

NYTFH = Number of hours of total failure (all system functions failed) during one vear.
NYFH = NYVitFH = NYTFH.
1 - TUA = VitA =FA

28




Atilim University

Corrective Maintenance Productivity and Effectiveness Metrics

Code Name Calculation Formula
CMaip | Gorective Maintenance | ¢y YT
FCMP | enance Productivity FCMP ="~
CMAiE | SRSl o | v

CMaiYH = Total yearly working hours invested in the corrective maintenance of the software

system.

NYF = number of software failures detected during a year of maintenance service.
NMFP = number of function points designated for the maintained software.

KLMC = Thousands of lines of maintained software code.

High productivity - less manpower for maintenance

04/12/2025

A. Akca-Okan

29

SE345



Atilm University SE345

Process Metrics

Software process quality metrics: error density and severity
Software process timetable metrics

« Software process error removal effectiveness metrics

Software process productivity metrics



Atihm University SE345

Error density metrics

Process Metrics

Software process quality
metric

Error severity metrics

Software process
timetable metrics

Error removal
effectiveness metrics

v
9
-
-+
)
p=
0p)
0p)
)
O
O
-
al

Software process
productivity metrics

- Average find-fix cycle time

o Number of person-hours per inspection

o Number of person-hours per KLOC

o Average number of defects found per inspection

o Number of defects found during inspections in each defect category
o Average amount of rework time

04/12/2025 A Akca-Okan - Percentage of modules that were inspected 31



Atilim University

Quality Metrics - Error Density Metrics
Measures & Metrics for Error Counting

Number of Code Errors (NCE) vs Weighted Number of Code Errors (WCE)

SE345

Calculation of NCE Calculation of WCE Code Name Calculation formula
Error severity class Number of Errors Relative Weight | Weighted Errors | | cppy Code Error Density CED = YCE
KLOC
i b c D=bxc )
DED Development Error Density DED = _NDE
low severity 42 1 42 KLOC
WCED Weighted Code Error Density WCDE = wee
medium severity 17 1 51 KLOC
i i WDE
high severity 1 9 99 WDED Weighted Development Error Density WDED = " L
KLOC
Total 70 m== 191 Weighted Code Errors per Function WCE
WCEF Point WCER =~
WD Weighted Development Errors per ~ WDE
NCE 10 —— —— EF Function Point WDEF = “NFP
WCE - 192 NCE = The number of code errors detected by code inspections and testing.
NDE = total number of development (design and code) errors detected in the development process.
WCE = weighted total code errors detected by code inspections and testing.
WDE = total weighted development (design and code) errors detected in development process.
04/12/2025 A. Akca-Okan 32



Atilm University

Error Severity Metrics

Timetable Metrics

SE345

Code Name Calculation formula
ASCE |Average Severity of Code ASCE — WCE
Errors NCE
ASDE |Average Severity of wspE = W PE
Development Errors NDE

Code Name Calculation formula
TTO Timetable Observance TTO = _M§0_T
MS
ADMC |Average Delay of Milestone ADMC _TCDAM
Completion MS

NCE = The number of code errors detected by code inspections and testing.

NDE = total number of development (design and code) errors detected in the
development process.

WCE = weighted total code errors detected by code inspections and testing.

WDE = total weighted development (design and code) errors detected in
development process.

When # of errors are generally decreasing, to
detect increasing # of severe errors

04/12/2025 A. Akca-Okan

MSOT = Milestones completed on time.

MS = Total number of milestones.
TCDAM = Total Completion Delays (days, weeks, etc.) for all milestones.

to identify

. accounts of success - completion of milestones

per schedule

. faillure events (hon-completion per schedule)
. Average delay in completion per schedule

33




Atilm University

Error Removal Effectiveness Metrics

Code Name Calculation formula

DERE Development Errors Removal | jopp NDE
Effectiveness NDE + NYF

DWERE |Development Weighted DWERE = WDE
Errors Removal Effectiveness WDE+WYF

NDE = total number of development (design and code) errors) detected in the
development process.

WCE = weighted total code errors detected by code inspections and testing.

WDE = total weighted development (design and code) errors detected in
development process.

NYF = number software failures detected during a year of maintenance service.

WYF = weighted number of software failures detected during a year of maintenance
service.

Can be measured after a period of regular system
operation: 6-12 months

04/12/2025 A. Akca-Okan

Productivity Metrics

SE345

Code Name Calculation formula

DevP |Development Productivity Devp = . DeVH
KLOC
Function point Development _ DevH

FDevP Productivity FDevP = “NFP
CRe |Code Reuse Crem oRLOC
KLOC

DocRe | Documentation Reuse DocRe = _ReDoc
NDoc

DevH = Total working hours invested in the development of the software system.
ReKL.OC = Number of thousands of reused lines of code.

ReDoc = Number of reused pages of documentation.

NDoc = Number of pages of documentation.

Deal with human resource productivity & indirectly
extent of software reuse

34




Atilim University SE345

Project Metrics



Atilm University

Project Metrics - Monitoring & Control

04/12/2025

Successful monitoring and control
depends on accurate and current
project work performance
information

Daily raw numbers - time expended per task, cost
information, milestones met

Frequency numbers - bugs per, user issues reported
per

Qualitative assessments - user reported likes/dislikes
with product, team member reported task percent
complete estimates

A. Akca-Okan

Metrics

Estimated time to completion
Budget at completion
Impact on customers

36

SE345



Atilm University SE345

Project Metrics Project Metrics
Schedule Control Milestone Analysis
is concerned with: Milestones are events or stages of the project that

« determining the current status of all items currently represent a significant accomplishment.

being worked on, Milestones
- influencing factors that create schedule changes, ... show completion of important steps
signal the team and suppliers
can motivate the team
offer reevaluation points
help coordinate schedules
identify key review gates
delineate work packages

« determining that the schedule has or has not
changed, and

 managing changes to the schedule using a formal
Integrated Change Control process

Potential information to collect:

m milestones achieved on time and on budget,

= hours worked on each task,

s hoursremaining to complete each active task,

m resource availability issues such as turnover or health issues,
s costinformation for resources and other budget items,

s riskinformation,

s quality information,

m Scope changes, and

m vendorissues
04/12/2025 A. Akca-Okan 37




Atilm University SE345

Project Metrics Project Metrics
Cost Control Earned Value Management (EVM)

or Earned Value Analysis (EVA)

« Earned value

— influencing the factors that create cost variances on — Is a measure of progress
the project and — enables us to assess the “percent of completeness” of a
project using quantitative analysis rather than rely on a gut

— controlling changes to the project’s budget ,
feeling

— “provides accurate and reliable readings of performance
from as early as 15 percent into the project.” [FLE98]

— A technique used to help determine and manage project
progress and the magnitude of any variations from the

« Like the other monitoring and control processes, cost
control is a continual process of comparing the current
actual project expenditures to the defined budget and
determining when issues have arisen that need to be dealt

with planned values concerning cost, schedule, and performance
. Almo:st every change made on an IT project will affect « The technique was created to help the project team and
Cost in some manner stakeholders gain a better understanding of just how the

project is performing
 Many project managers fail to evaluate performance properly

— How much work has actually been completed and how much
work actually remains

— Not necessarily how many hours have been worked

04/12/2025 A. Akca-Okan 38



04/12/2025

Atilm University

Project Metrics - EVA/EVM

Percentage of Completion (PoC)= Rate of performance
— Often IT projects can be difficult to estimate progress
— 0-100 percent rule
— 50-50 percent rule
— Interval percent rule (O, 25, 50, 75, 100)

Planned Value (PV) - is the budgeted cost for the work scheduled to be
completed on a task, work package, or activity up to a given point in time
(BCWS)

Actual Cost (AC) - is the total cost incurred in accomplishing work on
the task during a given time period (ACWP)

Earned Value (EV) - is the budgeted amount for the work actually
completed on the task during a given time period (BCWP) or

EV = (PV)*(percent complete)

Cost Variance (CV) - equals earned value (EV) minus actual cost (AC) or
CV=EV-AC
Schedule Variance (SV) - equals earned value (EV) minus planned value
(PV) or
SV=EV-PV

A. Akca-Okan

SE345

Cost Performance Index (CPI) - equals the ratio of EV to the AC, or
CPlI=EV/AC

— Equalto 100% then Actual = Planned

— Lessthan100% then project is over budget
Schedule Performance Index (SPI) - equals the ratio of EV to the PV, or
SPI=EV/PV

— Equalto 100% then Actual = Planned

— Less than100% project is behind schedule

Budget at Completion (BAC)
— How much did you BUDGET for the Total Job?
— BAC =3 (PV,) for all tasks k

Estimate at Completion (EAC)
— What do we currently expect the TOTAL project to cost?
EAC=BAC/CPI

Estimate to Complete (ETC)

— From this point on, how much MORE do we expect it to cost to finish
the job?

ETC=EAC-AC

39



Atilim University SE345

Analysis, Design & Coding Metrics



Atilim University SE345

Analysis Metrics

. Function-based metrics: use the function point as a Normalised data are used to evaluate the process and the

normalizing factor or as a measure of the “size” of the product (but never individual people)

specification

« COCOMO: COnstructive COst MOdel (COCOMO) is an size-oriented normalisation — the line of code approach
algorithmic Software Cost Estimation Model
developed by Barry Boehm

function-oriented normalisation — the function point approach

 Bang metric: used to develop an indication of software
“size” by measuring characteristics of the data,
functional and behavioral models

« Specification metrics: used as an indication of quality
by measuring number of requirements by type

04/12/2025 A. Akca-Okan 41



Atilm University

Analysis Metrics - ...

SE345

Typical Function-Oriented Metrics
« $perFP

pages of documentation per FP
FP per person-month

errors per FP
defects per FP

— Analysis

Typical Size-Oriented Metrics
page of documentation per KLOC
LOC per person-month

$ / page of documentation
$ per LOC

—_

— Analysis

errors per KLOC (thousand lines of code)

defects per KLOC

errors / person-month

04/12/2025 A. Akca-Okan

42




Atilm University

Design Metrics

Architectural Desigh Metrics

- Structural complexity = - Cohesion metrics: a function
g(fan-out) of data objects and the locus

- Data complexity = f(input & oif tels eleiiniieh

output variables, fan-out) - Coupling metrics: a function
- System complexity = of input and output
h(structural & data parameters, global variables,

complexity) and modules called

- Complexity metrics:
hundreds have been
proposed (e.g., cyclomatic
complexity)

- HK metric: architectural
complexity as a function of
fan-in and fan-out

- Morphology metrics: a
function of the number of
modules and the number of
Interfaces between modules

04/12/2025 A. Akca-Okan

SE345

- Layout appropriateness: a

function of layout entities, the
geographic position and the
“cost” of making transitions
among entities

43



Atilim University

Architectural Design Metrics

04/12/2025

A. Akca-Okan

SE345

Structural complexity = g(fan-out)
> S(i) =12, (i)
where f_ (i) is the fan-out of module |

Data complexity = f(input & output variables, fan-out)
2> D(i) = v(i)/[ f (i) +1]

where v(i) is the number of input and output variables that are
passed to and from module .

System complexity = h(structural & data complexity)
-2 C(i) = S(i) + D(i)

HK metric: architectural complexity as a function of fan-in and
fan-out

> HKM = length(i) [ f, (i) + f,,(i)]?

where length(i) is the number of programming language
statements in a module I and £, (i) is the fan-in of a module .

Morphology metrics: a function of the number of modules and
the number of interfaces between modules

—>size=n+a
where n is the number of nodes and a is the numberQf arcs.



Atilm University

Morphology Metrics

size=n+a
N = number of modules

a = number of arcs (lines of
control)

arc-to-node ratio, r = a/n

depth = longest path from the root
to a leaf

width = maximum number of
nodes at any level

04/12/2025 A. Akca-Okan

N

SE345

Yg

Size:17 +18

depth:4 width: 6

arc-to node ratio: ~1




Atilim University

Component-Level Design Metrics

SE345

Cohesion Internal unity of a Shared data & : :
. Y High cohesion
Metrics module responsibilities

. . Dependencies Parameters, :

‘\ AL R between modules globals, calls e Eelilling
i Complexity Difficulty of Cenifielies
L - : : operators,
3 = Metrics understanding/testing
structure

o

Low complexity
Cohesion Metrics

IR

T

il

oL

02

Coupling Metrics

\\\\\\\\\\\\\\\\\\

\

o€

AT

ov
L

i

<33

o data and control flow coupling
o global coupling

o environmental coupling
Complexity Metrics
A\

\\M |
L\‘H\ 'o\e

o
\4

TTRNCLER

o Cyclomatic complexity

o EXxperience shows that if this > 10, it is very
difficult to test
04/12/2025 A. Akca-Okan

46



Atihm University

Coupling Metrics

mmmm Data and control flow coupling

- d, = number of input data parameters

- C; = number of input control parameters

- dy = number of output data parameters

* Co = number of output control parameters

mmm Global coupling

- g4=number of global variables used as data
- g.=number of global variables used as control

mmmw CNvironmental coupling

- w = number of modules called (fan-out)

r = number of modules calling the module under consideration (fan-in)
Module Coupling: m_=1/(d;+ 2*c, + dg + 2*Co + g4 + 2*8. + W + 1)

- m.=1/1+0+1+0+0+0+1+0)=.33 (Low Coupling)
- m.=1/(5+25+5+2*5+10+0+3+4)=.02 (High Coupling)
04/12/2025 A. Akca-Okan

SE345

Coupling metrics measure how dependent one module is on other
modules. It quantifies the degree of interaction between modules.
Coupling is determined by assessing how many external connections
a module has, incuding:

1. Input parameters it receives

2. Output parameters it returns

3. Global variables it reads or modifies

4. Other modules it calls

5. How many modules call it

A module has low coupling when it is self-contained and interacts
with few external modules.

A module has high coupling when it depends heavily on:

 large parameter lists

» shared global variables

* many other modules

Types of Coupling (from tightest to loosest):
« Content coupling (worst)

« Common coupling

« External coupling

« Control coupling

« Stamp coupling

« Data coupling (best)

* No coupling (ideal)

Examples of Coupling Metrics:

* Fan-in/ Fan-out (number of modules calling/called by a module)
« Coupling Between Objects (CBO)

 Message Passing Coupling (MPC)

Quality Meaning: Low coupling — better maintixj)ﬁability,
independence, reusability, and testability



04/12/2025

Atilm University

Cohesion Metrics

Cohesion metrics measure how strongly related and
focused the responsibilities of a single module (e.g., a
class, function, or component) are. |n software quality,
cohesion reflects a module’s internal strength.

Cohesion is evaluated by analysing:

« Data objects used in the module (variables, data
structures).

 Where these data objects are defined (their locus of
definition).

A module has high cohesion when:

 |ts responsibilities focus on a single task.

« All functions within the module operate on the same set
of internal data.

A module has low cohesion when:

 |ts functions operate on unrelated data objects.

« Responsibilities are mixed (e.g., doing calculations,
printing, saving to file).

A. Akca-Okan

SE345

Types of Cohesion (from weakest to strongest):
« Coincidental

* Logical

Temporal

Procedural

Communicational

Sequential

Functional (best)

Examples of Cohesion Metrics:

« LCOM (Lack of Cohesion in Methods): Counts pairs of
methods that do not share common data attributes.

* Tight Class Cohesion (TCC)

 Loose Class Cohesion (LCC)

Quality Meaning: Higher cohesion — better modularity,
easier maintenance, fewer side effects, clearer
responsibility.

48



Atilm University

Metrics for Source Code

 Cyclomatic Complexity (McCabe)

Industry studies have indicated that the higher V(G),
the higher the probability or errors.

1)
(2)
3)

modules

()
=)
{6)

7)
8)

modules in this range are
more error prone

)
{10)

b o S

1)

04/12/2025 A. Akca-Okan

Node | Statement

while (x<100) {

SE345

Measures the number of independent execution paths through a program.
Formula:

V(G =E-N+2

where:

 E =number of edges

N =number of nodes

« 2 =number of connected components

High V(G) — more branches — more test cases required.

2
<

== O) {
0:

if (a[x] %
paricy =
h
else ({
paritcy =
J
switch(parity) {

1z

case 0:
princtin{( “af™ + 1 + *] is even”):;
case 1:
printliln( “a[(™ + 1 + ] 1is odd”):
default:
printlin( “Unexpected error”):
H
X++,;

crue;

49



Atilm University SE345

Metrics for Source Code

: , : = OPERATOR COUNT OPERAND COUNT
. Maurice HALSTEAD’s Software Science z = 20; .
Y = -2; IF-Then- end if 1 Z 5
o Ny =the number of distinct operators X = 5 While End-While 1 Y 2
' = 5 X 4
o N, =the number of distinct operands g 20 1
While X>0 . i
o N; = the total number of operator occurrences f 52 i
+
o N, =the total number of operand occurrences Z =2 + Y; 1 0 2
print 1 1 1
. 0 1
Length: N=N, + N, it Z >0 then
X=X-1; g N,=21 Length: N=21+17 = 38
) _ . 1~ 1~ - IN = =
Volume: V = Nlog,(n; + n,) end-1f; n,=8 N,=17 Volume:V = 38 log,(17)=155
End-while;
Print(2) ;

04/12/2025 A. Akca-Okan 50



Atilm University SE345

Metrics for OO Design

Whitmire [WHI97] describes nine distinct and measurable characteristics of an OO design:

« Sijze: Size is defined in terms of four views: population, Completeness: An indirect implication about the degree
volume, length, and functionality to which the abstraction or design component can be

reused.
« Complexity: How classes of an OO design are

Interrelated to one another « Cohesion: The degree to which all operations working

together to achieve a single, well-defined purpose
« Coupling: The physical connections between elements

of the OO0 design  Primitiveness: Applied to both operations and classes,

the degree to which an operation is atomic
« Sufficiency: “the degree to which an abstraction

possesses the features required of it, or the degree to

Similarity: The degree to which two or more classes are

which a design component possesses features in its similar in terms of their structure, function, behavior, or
abstraction, from the point of view of the current purpose
application.”

« Volatility: Measures the likelihood that a change will
occur

04/12/2025 A. Akca-Okan 51



Atilm University SE345

Distinguishing Characteristics

« Localisation—the way in which information is
concentrated in a program

 Encapsulation—the packaging of data and processing

. . L . . . Berard [BER95] argues that the following
Information hiding—the way in which a secure interface T T T e el

hides information about operational details developed

* |nheritance—the manner in which the responsibilities of
one class are propagated to another

* Abstraction—the mechanism that allows a design to
focus on essential details

04/12/2025 A. Akca-Okan 52



Atilim University SE345

Class-Oriented Metrics

Proposed by Chidamber and Proposed by Lorenz and Kidd

Kemerer

The MOOD Metrics Suite

[LOR94]:

- weighted methods per class * class size « Method inheritance factor

+ depth of the inheritance tree - number of operations * Coupling factor
overridden by a subclass

 Polymorphism factor
- number of children Y P

 number of operations added

_ _ by a subclass
- coupling between object

classes
« specialisation index

- response for a class

- lack of cohesion in methods

04/12/2025 A. Akca-Okan 53



Atilim University SE345

Metrics for Testing Metrics for Maintenance

* Analysis, design, and code metrics guide the design « Software Maturity Index (SMI)

and execution of test cases. o M;=number of modules in the current release

o F.= number of modules in the current release that

 Metrics for Testing Completeness have been changed
o Breadth of Testing - total number of requirements o F,= number of modules in the current release that
that have been tested have been added
o Depth of Testing - percentage of independent o F4= number of modules from the preceding release
basis paths covered by testing versus total that were deleted in the current release

number of basis paths in the program.

SMI = [M, -(F.+F.+F)]/ M,

* A simple measure of reliability is mean-time-between-failure (MTBF), where
MTBF =MTTF + MTTR

« Theacronyms MTTF and MT TR are mean-time-to-failure and mean-time-to-repair, respectively.

« Software availability is the probability that a program is operating according to requirements at a given point in time
and is defined as

Availability =[MTTF/(MTTF + MTTR)] x100%
04/12/2025 A. Akca-Okan 54



Atilim University SE345

Metrics Derived from Reviews

B inspection time per page of documentation

B inspection time per KLOC or FP
B inspection effort per KLOC or FP

B errors uncovered per reviewer hour
B errors uncovered per preparation hour
B errors uncovered per SE task (e.g., design)

B humber of minor errors (e.g., typos)

B humber of major errors
(e.g., nonconformance to req.)

m number of errors found during preparation

04/12/2025 A. Akca-Okan 55



Atilim University SE345

General limitations of quality metrics

* Budget constraints in allocating the necessary Examples of software metrics that exhibit severe

resources. weaknesses

. . L « Parameters used in development process
Human factors, especially opposition of employees to

| _ o metrics:
evaluation of their activities. KLOC, NDE, NCE.
*Validity Uncertainty regarding the data's, partial and « Parameters used in product (maintenance)
biased reporting. metrics:

KLMC, NHYC, NYF.

04/12/2025 A. Akca-Okan 56



Atihm University SE345

Factors affecting parameters Factors affecting

used for development parameters used for product
process metrics (Mmaintenance) metrics

a. Programming style (KLOC). a. Quality of installed software and its

b. Volume of documentation comments (KLOC). documentation (NYF, NHYC).

b. Programming style and volume of

S SOMRERS COmpIEiLEol s N2, documentation comments included in the
d. Percentage of reused code (NDE, NCE). code be maintained (KLMC).
e. Professionalism and thoroughness of design c. Software complexity (NYF).
review and software testing teams: affects the d. Percentage of reused code (NYF).
number of defects detected (NCE). . . .
e. Number of installations, size of the user
f.  Reporting style of the review and testing results: population and level of applications in use:
concise reports vs. comprehensive reports (NDE, (NHYC, NYF).
NCE).

04/12/2025 A. Akca-Okan 57



Atihm University

Process of defining software
quality metrics

Software quality, development
team productivity, etc

Target values: standards, previous
year’s performance, etc.

Reporting process, frequency of
reporting, method(s) of metrics data
collection

04/12/2025 A. Akca-Okan

ne an
y measured

!!; ﬁl‘l! !HE Mﬂ Ea

measure the attributes

Changes of metrics

Developments in the
organization and
its environment

-

ermine compara
target values (indicators)

-

Changes in comparative
target values (indicators)

Changes in metrics
data collection

b=

metrics procedures
and work instructions

Application of software quality

Analveic of mptrice
performance and effects
of environmental changes

Metrics data for analysis
of metrics” performance

&

metrics

Y

Metrics data
collection

Metrics data for managerial
control applications

58

345



Atilim University SE345

Discussion Question -1

You want to track the progress of your team and identify potential risks in meeting deadlines.

> Number of Requirements Implemented: Tracks how many user stories or features have been coded.
>  Effort Spent per Requirement: Tracks the time developers spend on individual requirements.

You find that 80 out of 100 requirements have been implemented so far, but the time spent on each is
Increasing compared to earlier phases. This indicates...?

04/12/2025 A. Akca-Okan 59



Atilim University SE345

Discussion Question - 2

You want to evaluate how effectively the team is converting resources into deliverables while ensuring quality.

-» Defect Removal Efficiency (DRE): DRE=(Defects Found and Fixed During Development/ Total
Defects)x100 This metric shows how effective your testing process is.

-»  Code Churn Rate: Measures how much code is added, modified, or deleted over time. %10-20 may be
acceptable. High churn rates may indicate unstable requirements or poor initial design.

Your processing metrics reveal:
° A DRE of 70%, indicates ....?
o %35 code churn rate, signals ...?
Your processing metrics reveal:
. A DRE of 70%, indicating 30% of defects are slipping past your testing phase.
. A high code churn rate, sighaling significant rework due to changing requirements.

If metrics highlight low DRE (Defect Removal Efficiency), you might decide to improve your testing process or
allocate more resources to testing.

If metrics show delays in requirement implementation, you could address inefficiencies or scope changes
causing the delay.

04/12/2025 A. Akca-Okan 60



Atilim University

SE345

Backup Slides

04/12/2025 A. Akca-Okan

61



Atihm University

Software product metrics

Software metric

Fan in/Fan-out

Length of code

Cyclomatic complexity

Length of identifiers

Depth of conditional
nesting

Fog index

Description

Fan-in is a measure of the number of functions or methods that call some other
function or method (say X). Fan-out is the number of functions that are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the
design and changes to X will have extensive knock-on effects. A high value for fan-out
suggests that the overall complexity of X may be high because of the complexity of the
control logic needed to coordinate the called components.

This is a measure of the size of a program. Generally, the larger the size of the code of
a component, the more complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most reliable metrics for predicting
error-proneness in components.

This is a measure of the control complexity of a program. This control complexity may
be related to program understandability.

This is a measure of the average length of distinct identifiers in a program. The longer
the identifiers, the more likely they are to be meaningful and hence the more
understandable the program.

This is a measure of the depth of nesting of if-statements in a program. Deeply nested
if statements are hard to understand and are potentially error-prone.

This is a measure of the average length of words and sentences in documents. The
higher the value for the Fog index, the more difficult the document is to understand.

04/12/2025 A. Akca-Okan

62

SE345



Atilm University

Object-oriented metrics

Object-oriented
metric

Depth of inheritance
tree

Method fan-in/fan-
out

Weighted methods
per class

Number of
overriding
operations

Description

This represents the number of discrete levels in the inheritance tree where
sub-classes inherit attributes and operations (methods) from super-classes.
The deeper the inheritance tree, the more complex the design. Many different
object classes may have to be understood to understand the object classes at
the leaves of the tree.

This is directly related to fan-in and fan-out as described above and means
essentially the same thing. However, it may be appropriate to make a
distinction between calls from other methods within the object and calls from
external methods.

This is the number of methods that are included in a class weighted by the
complexity of each method. Therefore, a simple method may have a
complexity of 1 and a large and complex method a much higher value. The
larger the value for this metric, the more complex the object class. Complex
objects are more likely to be more difficult to understand. They may not be
logically cohesive so cannot be reused effectively as super-classes in an
inheritance tree.

This is the number of operations in a super-class that are over-ridden in a sub-
class. A high value for this metric indicates that the super-class used may not
be an appropriate parent for the sub-class.

04/12/2025 A. Akca-Okan

63

SE345



Atilm University

Coupling and Cohesion

Goal: Reduction of Cohesion measures the
complexity while change dependence among
occurs classes

High cohesion: The classes in the
subsystem perform similar tasks
and are related to each other (via
associations) GOOD!

Low cohesion: Lots of
miscellaneous and auxiliary classes,
no associations BAD!!

04/12/2025 A. Akca-Okan

Coupling measures
dependencies between
subsystems

High coupling: Changes to one
subsystem will have high impact on
the other subsystem (change of
model, massive recompilation, etc.)
BAD!!

Low coupling: A change in one
subsystem does not affect any
other subsystem GOOD!!

SE345

Subsystems should have
as maximum cohesion and
minimum coupling as
possible:

How can we achieve high cohesion?
How can we achieve loose coupling?

64



Atilim University

Coupling

04/12/2025

A. Akca-Okan

Indicates the interdependence or interrelationships of the modules

Type

Description

Good Mo Direct Coupling The methods do not relate to one another; that is, they do
not call one another.
Data The calling method passes a variable to the called method.
If the variable is composite, (i.e., an object], the entire
object is used by the called method to perform its function.
Stamp The calling method passes a composite variable (i.e., an
object) to the called method, but the called method only
uses a portion of the object to perform its function.
Control The calling method passes a control variable whose value
will control the execution of the called method.
Common or Global The methods refer to a “global data area” that is outside the
individual objects.
Bad Content or Pathological A method of one object refers to the inside (hidden parts) of

another object. This violates the principles of encapsulation
and information hiding. However, C++ allows this to take
place through the use of “friends.”

65

SE345



Atilim University SE345

The Law of Demeter

* An object should only send messages to one of
the following:

— |tself

— An object that is contained in an attribute of
the object or its superclass

— An object that is passed as a parameter to
the method

— An object that is created by the method

— An object that is stored in a global variable

04/12/2025 A. Akca-Okan 66



Atilim University

Cohesion

04/12/2025

A. Akca-Okan

Description

Good Functional A method performs a single problem-related task (e.g.,
Calculate current GPAJ.

Sequential The method combines two functions in which the output
from the first one is used as the input to the second one
le.g., format and validate current GPA).

Communicational The method combines two functions that use the same
attributes to execute (e.g., calculate current and
cumulative GFA).

Frocedural The method supports multiple weakly related functions. For
example, the method could calculate student GPA, print
student record, calculate cumulative GPA, and print
cumulative GPA.

Temporal or Classical The method supports multiple related functions in time
te.g., initialize all attributes).

Logical The method supports multiple related functions, but the
choice of the specific function is chosen based on a control
variable that is passed into the method. For example, the
called method could open a checking account, open a sav-
ings account, or calculate a loan, depending on the message
that is send by its calling method.

Bad Coincidental The purpose of the method cannot be defined or it performs
multiple functions that are unrelated to one another. For
example, the method could update customer records, calcu-
late loan payments, print exception reports, and analyze
competitor pricing structure.

67

SE345



Atihm University SE345

|ldeal Class Cohesion

Contain multiple methods that are Have methods that refer to Not have any control-flow
visible outside the class attributes or other methods coupling between its methods
defined with the class or its
superclass
68

04/12/2025 A. Akca-Okan



Atihm University

Types of Class Cohesion

04/12/2025

A. Akca-Okan

Description
Cood ldeal The class has none of the mixed cohesions.

Mixed-Eole The class has one or more attributes that relate objects of
the class to other objects on the same layer (e.g., the
problem domain layer), but the attribute(s) have nothing to
do with the underlying semantics of the class.

Mixed-Domain The class has one or more attributes that relate objects of
the class to other objects on a different layer. As such,
they have nothing to do with the underlying semantics of
the thing that the class represents. In these cases, the
offending attribute(s) belongs in another class located on
one of the other layers. For example, a port attribute located
in a problem domain class should be in a system architec-
ture class that is related to the problem domain class.

Worse Mixed-Instance The class represents two different types of objects. The class
should be decomposed into two separate classes. Typically,
different instances only use a portion of the full definition of
the class.

69

SE345



Atihm University SE345

Other Code Metrics

* Halstead'’s S_Oftware S_C'ence: d Operation-Oriented Project Metrics Testability Metrics
Comprehenswe_CO”eCtlon of Proposed by Lorenz and Proposed by Lorenz and Proposed by Binder
metrics all predicated on the Kidd [LOR94: Kidd [LOR94]: [BIN94:
number (count and occurrence) of
operators and operands within a - average operation size * number of scenario * encapsulation related
component or program operation complexity scripts o lack of cohesionin

. average number of » number of key classes methods
parameters per operation  number of subsystems o percent public and
 Lines of Code protected
o public access to data
members

« McCabe's Cyclomatic Complexity - inheritance related

o humber of root classes
o fanin

o humber of children and
depth of inheritance
tree

04/12/2025 A. Akca-Okan 70



Atim University

SE345

Halstead’s Software Science

04/12/2025

1. Program Vocabulary (n)

2. Program Length (N)

3. Program Volume (V)

4. Program Difficulty (D)

6. Time to Program (T)

7. Estimated Number of Bugs (B)

The total number of distinct operators and operands:
n=n; +n,

Total occurrences of operators and operands:
N = N; + N,

Represents the size of the implementation in terms of
information content:
V =N -log,(n)

Indicates how hard the program is to write or understand

based on its operators and operands:
_ng N

_2 n,

The mental effort required to implement or understand the
program:
E=V-D

Estimated time (in seconds) to write the program:
T = % (Assuming 18 mental operations per second)

Halstead’s prediction of deliverezc}gbugs:
E
B =

3000

71



	Slide 1: SE345
	Slide 2
	Slide 3
	Slide 4: What to measure
	Slide 5: Measurement, Measures, Metrics
	Slide 6: Theory of Measurement
	Slide 7: Measurement Process
	Slide 8: Measures
	Slide 9: The Software Quality Metrics Framework
	Slide 10: Software Quality Metrics
	Slide 11: Subfactors &  Direct Metrics
	Slide 12: Software Quality Metrics
	Slide 13: Types of Metrics (different classifications)
	Slide 14: Types of Metrics – 1st Categorisation
	Slide 15: Product Metrics
	Slide 16: Product Metrics
	Slide 17: The function point method
	Slide 18: Crude function points (CFP) Calculation
	Slide 19: Calculating the relative complexity adjustment factor (RCAF)
	Slide 20: Function Point Method
	Slide 21: The ATTEND MASTER - Data Flow Diagram
	Slide 22: The ATTEND MASTER CFP calculation form
	Slide 23: Calculation of RCAF
	Slide 24: The ATTEND MASTER – function points calculation
	Slide 25: Extended function point metrics Feature Points, UCPs …
	Slide 26: Product Metrics
	Slide 27:   Help desk (HD) Quality Metrics 
	Slide 28:   Corrective Maintenance Quality Metrics 
	Slide 29:   Corrective Maintenance Productivity and Effectiveness Metrics 
	Slide 30: Process Metrics
	Slide 31: Process Metrics
	Slide 32: Quality Metrics - Error Density Metrics  Measures & Metrics for Error Counting
	Slide 33: Error Severity Metrics 
	Slide 34:   Error Removal Effectiveness Metrics 
	Slide 35: Project Metrics
	Slide 36: Project Metrics - Monitoring & Control
	Slide 37: Project Metrics  Schedule Control
	Slide 38: Project Metrics  Cost Control
	Slide 39: Project Metrics – EVA/EVM
	Slide 40: Analysis, Design & Coding Metrics
	Slide 41: Analysis Metrics
	Slide 42: Analysis Metrics - …
	Slide 43: Design Metrics
	Slide 44: Architectural Design Metrics
	Slide 45: Morphology Metrics
	Slide 46: Component-Level Design Metrics
	Slide 47: Coupling Metrics
	Slide 48: Cohesion Metrics
	Slide 49: Metrics for Source Code
	Slide 50: Metrics for Source Code
	Slide 51: Metrics for OO Design 
	Slide 52: Distinguishing Characteristics
	Slide 53: Class-Oriented Metrics
	Slide 54: Metrics for Testing
	Slide 55: Metrics Derived from Reviews
	Slide 56: General limitations of quality metrics 
	Slide 57: Factors affecting parameters used for development process metrics 
	Slide 58:   Process of defining software quality metrics
	Slide 59: Discussion Question - 1 
	Slide 60: Discussion Question - 2
	Slide 61: Backup Slides
	Slide 62: Software product metrics
	Slide 63: Object-oriented metrics
	Slide 64: Coupling and Cohesion
	Slide 65: Coupling
	Slide 66: The Law of Demeter
	Slide 67: Cohesion
	Slide 68: Ideal Class Cohesion
	Slide 69: Types of Class Cohesion
	Slide 70: Other Code Metrics
	Slide 71: Halstead’s Software Science 

