
Asst. Prof. Dr. Aylin AKCA-OKAN

Atılım University
Dept of Software Engineering

SE345

04/12/2025 A. Akca-Okan 1

SE345Atılım University

Tentative Course Schedule

1. Introduction to Software Quality and Assurance Chapter 1
2. Introduction to Software Quality and Assurance Chapter 1
3. Software Quality Factors Chapter 3
4. Overview of Components of the SQA System Chapter 4
5. Overview of Components of the SQA System Chapter 4
6. Integrating Quality Activities in Project Life Cycle Chapter 7
7. Midterm
8. Reviews, Inspection and Audits Chapter 8
9. Software Quality Metrics Chapter 21
10. Procedures and Work Instructions Chapter 14
11. Presentations
12. Software Change Process Chapter 18
13. SOA Process Standards Chapter 23

Wk Subjects Chapter

04/12/2025 A. Akca-Okan 2

SE345Atılım University

Measurement of products or systems is absolutely fundamental to the
engineering process.

I am convinced that measurement as practised in other engineering disciplines is
IMPOSSIBLE for software engineering

(Sommerville; http://www.utdallas.edu/~chung/SE3354Honors/IEEInaugural.pdf)

So, what do you think?

... collecting metrics is too hard

... it's too time-consuming

... it's too political

... it won't prove anything

…….

◆ to characterise

◆ to evaluate

◆ to predict

◆ to improve

04/12/2025 A. Akca-Okan 3

http://www.utdallas.edu/~chung/SE3354Honors/IEEInaugural.pdf

SE345Atılım University

What to measure

• Process
 Measure the efficacy of processes. What works, what doesn't.

• Project
 Assess the status of projects. Track risk. Identify problem areas. Adjust workflow.

• Product
 Measure predefined product attributes (generally related to ISO9126 Software Characteristics)

4
04/12/2025 A. Akca-Okan 4

SE345Atılım University

Measurement, Measures, Metrics

Measurement

is the act of obtaining a measure

Measure

provides a quantitative
indication of the size of some
product or process attribute,
E.g., Number of errors

A measure provides a
quantitative indication of the
extent, amount, dimension,
capacity, or size of some
attribute of a product or process

An example measure might be
five centimetres.

Metric

is a quantitative measure of the
degree to which a system,
component, or process
possesses a given attribute
(IEEE Software Engineering
Standards 1993) : Software
Quality - E.g., Number of errors
found per person hours
expended
An example of a metric would be
that there were only two user-
discovered errors in the first 18
months of operation.

Indicator

is a metric or combination of
metrics that provide insight into
the software process, a software
project, or the product itself

In software terms, an indicator
may be a substantial increase in
the number of defects found in
the most recent release of code.

Can you quantify security, evolvability, …?

• Measurement = how you obtained the number
• Measure = raw number
• Metric = calculation using the number
• Indicator = metric that signals performance

04/12/2025 A. Akca-Okan 5

SE345Atılım University

Theory of Measurement

Measurement is a mapping from the

empirical, observable world to the formal,

relational world.

• derived from examination of the software itself, e.g.,
source code.

static measures

• derived from observations of the execution of the
software

dynamic measures

• size, effort, schedule, and quality

direct measures

• measures derived from direct measures, e.g.,
productivity (amount/unit of time)

indirect measures

04/12/2025 A. Akca-Okan 6

SE345Atılım University

Measurement Process
• Formulation. The derivation of software

measures and metrics appropriate for the
representation of the software that is being
considered.

• Collection. The mechanism used to accumulate
data required to derive the formulated metrics.

• Analysis. The computation of metrics and the
application of mathematical tools.

• Interpretation. The evaluation of metrics results
in an effort to gain insight into the quality of the
representation.

• Feedback. Recommendations derived from the
interpretation of product metrics transmitted to
the software team.

04/12/2025 A. Akca-Okan 7

SE345Atılım University

Measures
Program Size Measures

• SLOC - source lines of code OR Function Point

• Line of code is typically correlated with effort. Boehm, Walston-Felix,
and Halstead all show Effort as a function of lines of code.

Effort Measures

• Most common units of measurement of effort are labour-month, staff
week, staff-month, person-year.

Attribute Class Describes and distinguishes

Type of labour direct and indirect labor: labor costs that can be charged
directly to the project or contract, and those that cannot

hour information regular or overtime work, and salaried or hourly workers

employment class regular company employees, whether full-time or part-time,
and employees brought in to work on a specific project task,
such as consultants and subcontractors

labour class workers by the types of work they do: managers at various
levels, analysts, designers, programmers, documentation
specialists, support staff, etc.

Activity software development activities and maintenance activities

product-level functions functions of software development, such as design, coding,
testing, and documentation; organised by major functional
element, by customer release, and by system

Quality Measures

• Two fundamental ideas related to quality are freedom from defect and suitability
for use. This suggests quality measures should be counts of defects and problem
reports.

Attribute Class Describes and distinguishes

problem status points in the problem analysis and correction process: open or closed;
recognized, evaluated, or resolved

problem type software defect or other kind of problem (hardware, operating system, user
mistake, operations mistake, new requirement, enhancement); for a software
defect, whether it is a defect in requirements, design, code, operational
document, test case, etc.

uniqueness new and unique defect, or a duplicate of another reported defect

criticality degree of disruption to a user when the problem is encountered

urgency degree of importance given to the evaluation, resolution, and closure of the
problem

finding activity the activity that uncovered the problem, such as synthesis, inspection, formal
review, testing, customer use

finding mode operational or non-operational environment where defect was found

Performance Measures

• Two common performance measures:
– response time - how long it takes to accomplish a task
– throughput - tasks can be completed in a unit of time

Reliability Measures

• Software reliability cannot be measured directly. It is generally computed from
other measures of the behavior of the software.

– Mean Time Between Failures
– Mean Time to Repair
– Availability

04/12/2025 A. Akca-Okan 8

SE345Atılım University

The Software Quality Metrics Framework

Quality requirements that the software product must meet

Quality factors – Management-oriented attributes of software that contribute to its quality

Quality subfactors – Decompositions of a quality factor to its technical components

Metrics – quantitative measures of the degree to which given attributes (factors) are present

1. Facilitate management control, planning and managerial
intervention.
Based on:

• Deviations of actual from planned performance.

• Deviations of actual timetable and budget performance from
planned.

 2. Identify situations for development or maintenance process
improvement (preventive or corrective actions). Based on:

• Accumulation of metrics information regarding the performance
of teams, units, etc.

04/12/2025 A. Akca-Okan 9

SE345Atılım University

Software Quality Metrics

Desired attributes of Metrics (Ejiogu, 1991)

– Simple and computable

– Empirical and intuitively persuasive

– Consistent and objective

– Consistent in the use of units and dimensions

– Independent of programming language, so
directed at models (analysis, design, test, etc.) or
structure of program

– Effective mechanism for quality feedback

04/12/2025 A. Akca-Okan 10

SE345Atılım University

Understanding

• Learning time: Time for
new user to gain basic
understanding of
features of the software

Ease of learning

• Learning time: Time for
new user to learn how to
perform basic functions
of the software

Operability

• Operation time: Time
required for a user to
perform operation(s) of
the software

Communicativeness

• Human factors: Number
of negative comments
from new users
regarding ergonomics,
human factors, etc.

Subfactors &
Direct Metrics

Understandability – The
amount of effort

required to understand
software

Ease of learning – The
degree to which user

effort required to learn
how to use the software

is minimized

Operability – The degree
to which the effort

required to perform an
operation is minimized

Communicativeness –
The degree to which

software is designed in
accordance with the

psychological
characteristics of users

04/12/2025 A. Akca-Okan 11

SE345Atılım University

Software Quality Metrics

• defects per KLOCcorrectness

• mean time to change (MTTC) the time it takes to analyze the change
request, design an appropriate modification, implement the change,
test it, and distribute the change to all users

• spoilage = (cost of change / total cost of system)

maintainability

• threat = probability of attack (that causes failure)

• security = probability attack is repelled

• Integrity =  [1 - threat * (1 - security)]

integrity

04/12/2025 A. Akca-Okan 12

SE345Atılım University

Types of Metrics (different classifications)

1

• Product Metrics
• Process Metrics
• Project Metrics

2

Analysis Metrics
• COCOMO
• Function/Feature Points

Design Metrics
• Coupling
• Cohesion
• Structural Complexity
• Data Complexity
• System Complexity

Coding Metrics
• Lines of Code
• McCabe's Cyclomatic

Complexity

3

Classification by subjects of
measurements
• Quality
• Timetable
• Effectiveness (of error

removal and maintenance
services)

• Productivity

04/12/2025 A. Akca-Okan 13

SE345Atılım University

Types of Metrics – 1st Categorisation

Process Metrics

◆ majority focus on quality achieved
as a consequence of a repeatable or
managed process

◆ statistical SQA data

◼ error categorisation & analysis

◆ defect removal efficiency

◼ propagation from phase to
phase

◆ reuse data

Project Metrics

◆ Effort/time per SE task

◆ Errors uncovered per review hour

◆ Scheduled vs. actual milestone
dates

◆ Changes (number) and their
characteristics

◆ Distribution of effort on SE tasks

Product Metrics

◆ focus on the quality of deliverables

◆ measures of analysis model

◆ complexity of the design

◼ internal algorithmic
complexity

◼ architectural complexity

◼ data flow complexity

◆ code measures (e.g., Halstead)

◆ measures of process effectiveness

◼ e.g., defect removal efficiency

04/12/2025 A. Akca-Okan 14

SE345Atılım University

Product Metrics

15

SE345Atılım University

Product Metrics

• Number and type of defects found during requirements,

design, code, and test inspections

• Number of pages of documentation delivered

• Number of new source lines of code created

• Number of source lines of code delivered

• Total number or source lines of code delivered

• Average complexity of all modules delivered

• Average size of modules

• Total number of modules

• Total number of bugs found as a result of unit testing

• Total number of bugs found as a result of integration testing

• Total number of bugs found as a result of validation testing

• Productivity, as measured by KLOC per person-hour

04/12/2025 A. Akca-Okan 16

SE345Atılım University

The function point method
 The function point approach for software sizing was

invented by Allan Albrecht in 1979

 The measure of Albrecht - Function Point Analysis
(FPA) - is well known because of its great
advantages:

• Independent of programming language and
technology.

• Comprehensible for client and user.

• Applicable at early phase of software life cycle.

The function point estimation process:

 Stage 1: Compute crude function points (CFP).

 Stage 2: Compute the relative complexity
adjustment factor (RCAF) for the project. RCAF
varies between 0 and 70.

 Stage 3: Compute the number of function points
(FP):

FP = CFP x (0.65 + 0.01 x RCAF)

04/12/2025 A. Akca-Okan 17

Main advantages
• Estimates can be prepared at the pre-project stage.
• Based on requirement specification documents (not specific dependent on development tools or

programming languages), the method’s reliability is relatively high.
Main disadvantages
• FP results depend on the counting instruction manual.
• Estimates based on detailed requirements specifications, which are not always available.
• The entire process requires an experienced function point team and substantial resources.
• The evaluations required result in subjective results.
• Successful applications are related to data processing. The method cannot yet be universally applied.

SE345Atılım University

Crude function points (CFP) Calculation

Software
system
components

Complexity level Total
CFP

Simple average complex

Count Weight
Factor

Points Count Weight
Factor

Points Count Weight
Factor

Points

A B C=
AxB

D E F=
DxE

G H I=
GxH

User inputs 3 4 6

User outputs 4 5 7

User online queries 3 4 6

Logical files 7 10 15

External interfaces 5 7 10

Total CFP

The method relates to the following five types of
software system components:

• Number of user inputs – distinct input applications,
not including inputs for online queries.

• Number of user outputs – distinct output applications
such as batch processed reports, lists, customer
invoices and error messages (not including online
queries).

• Number of user online queries – distinct online
applications, where output may be in the form of a
printout or screen display.

• Number of logical files – files that deal with a distinct
type of data and may be grouped in a database.

• Number of external interfaces – computer–readable
output or inputs transmitted through data
communication, on CD, diskette, etc.

The function point method applies weight factors to
each component according to its complexity.

04/12/2025 A. Akca-Okan 18

SE345Atılım University

No Subject Grade

1 Requirement for reliable backup and recovery 0 1 2 3 4 5

2 Requirement for data communication 0 1 2 3 4 5

3 Extent of distributed processing 0 1 2 3 4 5

4 Performance requirements 0 1 2 3 4 5

5 Expected operational environment 0 1 2 3 4 5

6 Extent of online data entries 0 1 2 3 4 5

7 Extent of multi-screen or multi-operation online data input 0 1 2 3 4 5

8 Extent of online updating of master files 0 1 2 3 4 5

9 Extent of complex inputs, outputs, online queries and files 0 1 2 3 4 5

10 Extent of complex data processing 0 1 2 3 4 5

11 Extent that currently developed code can be designed for reuse 0 1 2 3 4 5

12 Extent of conversion and installation included in the design 0 1 2 3 4 5

13
Extent of multiple installations in an organization and variety of customer
organizations

0 1 2 3 4 5

14 Extent of change and focus on ease of use 0 1 2 3 4 5

Total = RCAF

Calculating the relative complexity adjustment factor (RCAF)

• The relative complexity adjustment
factor (RCAF) summarizes the
complexity characteristics of the
software system and varies
between 0 and 70.

• Assign grades (0 to 5) to the 14
subjects that substantially affect the
required development efforts
(Extent of distributed processing,
performance requirements …).

• RCAF is the sum of grades regarding
the 14 subjects.

04/12/2025 A. Akca-Okan 19

SE345Atılım University

Function Point Method

• An example: The Attend Master

• Attend-Master is a basic employee attendance system that is
planned to serve small to medium-sized businesses employing 10–
100 employees.

• The system is planned to have interfaces to the company’s other
software packages: Human-Master, which serves human resources
units, and Wage-Master, which serves the wages units.

• Attend-Master is planned to produce several reports and online
queries.

04/12/2025 A. Akca-Okan 20

SE345Atılım University

The ATTEND MASTER - Data Flow Diagram

Analysis of the software system as presented in the
DFD summarises the number of various components:

• Number of user inputs – 2

• Number of user outputs – 3

• Number of user online queries – 3

• Number of logical files – 2

• Number of external interfaces – 2.

The degree of complexity (simple, average or
complex) was evaluated for each component.

04/12/2025 A. Akca-Okan 21

SE345Atılım University

The ATTEND MASTER CFP calculation form

Software
system
components

Complexity level

Total
CFP

Simple average complex

Count Weight
Factor Points Count Weight

Factor Points Count Weight
Factor Points

A B C=
AxB D E F=

DxE G H I=
GxH

User inputs 1 3 3 --- 4 --- 1 6 6 9

User outputs --- 4 --- 2 5 10 1 7 7 17

User online
queries 1 3 3 1 4 4 1 6 6 13

Logical files 1 7 7 --- 10 --- 1 15 15 22

External
interfaces --- 5 --- --- 7 --- 2 10 20 20

Total CFP 81

04/12/2025 A. Akca-Okan 22

SE345Atılım University

Calculation of RCAF

Relative Complexity
Adjustment Factor

No Subject Grade

1 Requirement for reliable backup and recovery 0 1 2 3 4 5

2 Requirement for data communication 0 1 2 3 4 5

3 Extent of distributed processing 0 1 2 3 4 5

4 Performance requirements 0 1 2 3 4 5

5 Expected operational environment 0 1 2 3 4 5

6 Extent of online data entries 0 1 2 3 4 5

7 Extent of multi-screen or multi-operation online data input 0 1 2 3 4 5

8 Extent of online updating of master files 0 1 2 3 4 5

9 Extent of complex inputs, outputs, online queries and files 0 1 2 3 4 5

10 Extent of complex data processing 0 1 2 3 4 5

11 Extent that currently developed code can be designed for reuse 0 1 2 3 4 5

12 Extent of conversion and installation included in the design 0 1 2 3 4 5

13 Extent of multiple installations in an organization and variety of customer
organizations

0 1 2 3 4 5

14 Extent of change and focus on ease of use 0 1 2 3 4 5

Total = RCAF 41

04/12/2025 A. Akca-Okan 23

SE345Atılım University

The ATTEND MASTER – function points calculation

FP = CFP x (0.65 + 0.01 x RCAF)

FP = 81 x (0.65 + 0.01 x 41)
= 85.86

Converting NFP to KLOC
• The estimates for the average number of lines of

code (LOC) required for programming a function
point are the following:

For C++:
KLOC = (85.86 * 64)/1000 = 5.495 KLOC

04/12/2025 A. Akca-Okan 24

SE345Atılım University

Extended function point metrics
Feature Points, UCPs …
• The function point metric was initially designed to be

applied to business information systems applications.

• The data dimension was emphasised to the exclusion of
the functional and behavioural (control) dimensions.

• The function point measure was inadequate for many
engineering and embedded systems

→ Feature points: A superset of the function point, designed
for applications in which algorithmic complexity is high
(real-time, process control, embedded software
applications).

→ UCPs: Use case points (UCPs) allow the estimation of an
application’s size and effort from its use cases. UCPs are
based on the number of actors, scenarios, and various
technical and environmental factors in the use case
diagram.

UCPs
• UCPs are based on the number of actors,

scenarios, and various technical and
environmental factors in the use case diagram.

• The UCP equation is based on four variables:
– Technical complexity factor (TCF)
– Environment complexity factor (ECF)
– Unadjusted use case points (UUCP)
– Productivity factor (PF)

 which yield the equation:

 UCP = TCP * ECF * UUCP * PF

04/12/2025 A. Akca-Okan 25

SE345Atılım University

Product Metrics

• Help Desk Quality metrics

• Help Desk Productivity metrics

• Help Desk Effectiveness metrics

• Corrective maintenance quality metrics

• Corrective maintenance productivity and effectiveness metrics

Refer to Operational Phase
Rely on Performance Reports during a specified period (6-12 months)
Comparison between successive years or different units

All customer calls

Failure Reports

Product Metrics
Categories

HD quality metrics

HD calls density metrics -
measured by the number of

calls

HD calls severity metrics - the
severity of the HD issues

raised

HD success metrics – the level
of success in responding to HD

calls
HD productivity metrics

HD effectiveness metrics

Corrective maintenance
quality metrics

Software system failures
density metrics

Software system failures
severity metrics

Failures of maintenance
services metrics

Software system availability
metrics

Corrective maintenance
productivity and effectiveness

metrics

04/12/2025 A. Akca-Okan 26

SE345Atılım University

Help desk (HD) Quality Metrics

• HD calls density metrics - measured by the number of calls.

• HD calls severity metrics - the severity of the HD issues raised.

• HD success metrics – the level of success in responding to HD calls.

04/12/2025 A. Akca-Okan 27

SE345Atılım University

Corrective Maintenance Quality Metrics
• Software system failures density metrics
• Software system failures severity metrics
• Failures of maintenance services metrics
• Software system availability metrics

04/12/2025 A. Akca-Okan 28

SE345Atılım University

Corrective Maintenance Productivity and Effectiveness Metrics

High productivity - less manpower for maintenance

04/12/2025 A. Akca-Okan 29

SE345Atılım University

Process Metrics

• Software process quality metrics: error density and severity

• Software process timetable metrics

• Software process error removal effectiveness metrics

• Software process productivity metrics

30

SE345Atılım University

Process Metrics

◼ Average find-fix cycle time

◼ Number of person-hours per inspection

◼ Number of person-hours per KLOC

◼ Average number of defects found per inspection

◼ Number of defects found during inspections in each defect category

◼ Average amount of rework time

◼ Percentage of modules that were inspected

P
ro

ce
ss

 M
et

ri
cs

Software process quality
metric

Error density metrics

Error severity metrics

Software process
timetable metrics

Error removal
effectiveness metrics

Software process
productivity metrics

04/12/2025 A. Akca-Okan 31

SE345Atılım University

Quality Metrics - Error Density Metrics
Measures & Metrics for Error Counting

Number of Code Errors (NCE) vs Weighted Number of Code Errors (WCE)

04/12/2025 A. Akca-Okan 32

SE345Atılım University

Error Severity Metrics

When # of errors are generally decreasing, to
detect increasing # of severe errors

Timetable Metrics

to identify
• accounts of success - completion of milestones

per schedule
• failure events (non-completion per schedule)
• Average delay in completion per schedule

04/12/2025 A. Akca-Okan 33

SE345Atılım University

Error Removal Effectiveness Metrics

Can be measured after a period of regular system
operation : 6-12 months

Productivity Metrics

Deal with human resource productivity & indirectly
extent of software reuse

04/12/2025 A. Akca-Okan 34

SE345Atılım University

Project Metrics

35

SE345Atılım University

Project Metrics - Monitoring & Control

Successful monitoring and control
depends on accurate and current

project work performance
information

Daily raw numbers – time expended per task, cost
information, milestones met

Frequency numbers – bugs per, user issues reported
per

Qualitative assessments – user reported likes/dislikes
with product, team member reported task percent

complete estimates

Metrics

Estimated time to completion

Budget at completion

Impact on customers

...

04/12/2025 A. Akca-Okan 36

SE345Atılım University

Project Metrics
Schedule Control
is concerned with:

• determining the current status of all items currently
being worked on,

• influencing factors that create schedule changes,

• determining that the schedule has or has not
changed, and

• managing changes to the schedule using a formal
Integrated Change Control process

Potential information to collect:

◼ milestones achieved on time and on budget,

◼ hours worked on each task,

◼ hours remaining to complete each active task,

◼ resource availability issues such as turnover or health issues,

◼ cost information for resources and other budget items,

◼ risk information,

◼ quality information,

◼ scope changes, and

◼ vendor issues

Milestones are events or stages of the project that
represent a significant accomplishment.

Milestones
… show completion of important steps
… signal the team and suppliers
… can motivate the team
… offer reevaluation points
… help coordinate schedules
… identify key review gates
… delineate work packages

Project Metrics
Milestone Analysis

04/12/2025 A. Akca-Okan 37

SE345Atılım University

Project Metrics
Cost Control

• is concerned with:

– influencing the factors that create cost variances on
the project and

– controlling changes to the project’s budget

• Like the other monitoring and control processes, cost
control is a continual process of comparing the current
actual project expenditures to the defined budget and
determining when issues have arisen that need to be dealt
with

• Almost every change made on an IT project will affect
Cost in some manner

Project Metrics
Earned Value Management (EVM)
or Earned Value Analysis (EVA)
• Earned value

– is a measure of progress
– enables us to assess the “percent of completeness” of a

project using quantitative analysis rather than rely on a gut
feeling

– “provides accurate and reliable readings of performance
from as early as 15 percent into the project.” [FLE98]

– A technique used to help determine and manage project
progress and the magnitude of any variations from the
planned values concerning cost, schedule, and performance

• The technique was created to help the project team and
stakeholders gain a better understanding of just how the
project is performing

• Many project managers fail to evaluate performance properly
– How much work has actually been completed and how much

work actually remains
– Not necessarily how many hours have been worked

04/12/2025 A. Akca-Okan 38

SE345Atılım University

Project Metrics – EVA/EVM
• Percentage of Completion (PoC)= Rate of performance

– Often IT projects can be difficult to estimate progress

– 0-100 percent rule

– 50-50 percent rule

– Interval percent rule (0, 25, 50, 75, 100)

• Planned Value (PV) – is the budgeted cost for the work scheduled to be
completed on a task, work package, or activity up to a given point in time
(BCWS)

• Actual Cost (AC) – is the total cost incurred in accomplishing work on
the task during a given time period (ACWP)

• Earned Value (EV) – is the budgeted amount for the work actually
completed on the task during a given time period (BCWP) or

EV = (PV)*(percent complete)

• Cost Variance (CV) – equals earned value (EV) minus actual cost (AC) or
CV = EV – AC

• Schedule Variance (SV) - equals earned value (EV) minus planned value
(PV) or

SV = EV – PV

• Cost Performance Index (CPI) - equals the ratio of EV to the AC, or
CPI = EV/AC
– Equal to 100% then Actual = Planned
– Less than 100% then project is over budget

• Schedule Performance Index (SPI) – equals the ratio of EV to the PV, or
SPI = EV/PV
– Equal to 100% then Actual = Planned
– Less than 100% project is behind schedule

• Budget at Completion (BAC)
– How much did you BUDGET for the Total Job?
– BAC = ∑ (PVk) for all tasks k

• Estimate at Completion (EAC)
– What do we currently expect the TOTAL project to cost?
EAC = BAC/CPI

• Estimate to Complete (ETC)
– From this point on, how much MORE do we expect it to cost to finish

the job?
ETC = EAC - AC

04/12/2025 A. Akca-Okan 39

SE345Atılım University

Analysis, Design & Coding Metrics

40

SE345Atılım University

Analysis Metrics

size-oriented normalisation — the line of code approach

function-oriented normalisation — the function point approach

Normalised data are used to evaluate the process and the
product (but never individual people)

• Function-based metrics: use the function point as a
normalizing factor or as a measure of the “size” of the
specification

• COCOMO: COnstructive COst MOdel (COCOMO) is an
algorithmic Software Cost Estimation Model
developed by Barry Boehm

• Bang metric: used to develop an indication of software
“size” by measuring characteristics of the data,
functional and behavioral models

• Specification metrics: used as an indication of quality
by measuring number of requirements by type

04/12/2025 A. Akca-Okan 41

SE345Atılım University

Analysis Metrics - …

Typical Function-Oriented Metrics
• $ per FP
• pages of documentation per FP
• FP per person-month
• :
• errors per FP
• defects per FP

Typical Size-Oriented Metrics

◆ page of documentation per KLOC

◆ LOC per person-month

◆ $ / page of documentation

◆ $ per LOC

◆ :

◆ errors per KLOC (thousand lines of code)

◆ defects per KLOC

◆ errors / person-month

Analysis

Analysis

04/12/2025 A. Akca-Okan 42

SE345Atılım University

Design Metrics

Architectural Design Metrics

• Structural complexity =
g(fan-out)

• Data complexity = f(input &
output variables, fan-out)

• System complexity =
h(structural & data
complexity)

• HK metric: architectural
complexity as a function of
fan-in and fan-out

• Morphology metrics: a
function of the number of
modules and the number of
interfaces between modules

Component-Level Design
Metrics

• Cohesion metrics: a function
of data objects and the locus
of their definition

• Coupling metrics: a function
of input and output
parameters, global variables,
and modules called

• Complexity metrics:
hundreds have been
proposed (e.g., cyclomatic
complexity)

Interface Design Metrics

• Layout appropriateness: a
function of layout entities, the
geographic position and the
“cost” of making transitions
among entities

04/12/2025 A. Akca-Okan 43

SE345Atılım University

Architectural Design Metrics • Structural complexity = g(fan-out)
 → S(i) = f 2out(i)

where fout(i) is the fan-out of module i

• Data complexity = f(input & output variables, fan-out)
 → D(i) = v(i)/[fout(i) +1]

where v(i) is the number of input and output variables that are
passed to and from module i.

• System complexity = h(structural & data complexity)
→ C(i) = S(i) + D(i)

• HK metric: architectural complexity as a function of fan-in and
fan-out
→ HKM = length(i) [fin(i) + fout(i)]2

where length(i) is the number of programming language
statements in a module I and fin(i) is the fan-in of a module i.

• Morphology metrics: a function of the number of modules and
the number of interfaces between modules
→ size = n + a

where n is the number of nodes and a is the number of arcs.04/12/2025 A. Akca-Okan 44

SE345Atılım University

Morphology Metrics

a

b c d e

f g i j k l

h m n p q r

size: 17 + 18 depth:4 width: 6 arc-to node ratio: ~1

• size = n + a

• n = number of modules

• a = number of arcs (lines of
control)

• arc-to-node ratio, r = a/n

• depth = longest path from the root
to a leaf

• width = maximum number of
nodes at any level

04/12/2025 A. Akca-Okan 45

SE345Atılım University

Component-Level Design Metrics

• Cohesion Metrics

• Coupling Metrics

o data and control flow coupling

o global coupling

o environmental coupling

• Complexity Metrics

o Cyclomatic complexity

o Experience shows that if this > 10, it is very
difficult to test

Metric Type Measures Based On Goal

Cohesion
Metrics

Internal unity of a
module

Shared data &
responsibilities High cohesion

Coupling Metrics Dependencies
between modules

Parameters,
globals, calls Low coupling

Complexity
Metrics

Difficulty of
understanding/testing

Control flow,
operators,
structure

Low complexity

04/12/2025 A. Akca-Okan 46

SE345Atılım University

Coupling Metrics

• di = number of input data parameters
• ci = number of input control parameters
• d0 = number of output data parameters
• c0 = number of output control parameters

Data and control flow coupling

• gd = number of global variables used as data
• gc = number of global variables used as control

Global coupling

• w = number of modules called (fan-out)
• r = number of modules calling the module under consideration (fan-in)
• Module Coupling: mc = 1/ (di + 2*ci + d0 + 2*c0 + gd + 2*gc + w + r)
• mc = 1/(1 + 0 + 1 + 0 + 0 + 0 + 1 + 0) = .33 (Low Coupling)
• mc = 1/(5 + 2*5 + 5 + 2*5 + 10 + 0 + 3 + 4) = .02 (High Coupling)

Environmental coupling

Coupling metrics measure how dependent one module is on other
modules. It quantifies the degree of interaction between modules.
Coupling is determined by assessing how many external connections
a module has, incuding:

1. Input parameters it receives
2. Output parameters it returns
3. Global variables it reads or modifies
4. Other modules it calls
5. How many modules call it

A module has low coupling when it is self-contained and interacts
with few external modules.
A module has high coupling when it depends heavily on:
• large parameter lists
• shared global variables
• many other modules

Types of Coupling (from tightest to loosest):
• Content coupling (worst)
• Common coupling
• External coupling
• Control coupling
• Stamp coupling
• Data coupling (best)
• No coupling (ideal)

Examples of Coupling Metrics:
• Fan-in / Fan-out (number of modules calling/called by a module)
• Coupling Between Objects (CBO)
• Message Passing Coupling (MPC)

Quality Meaning: Low coupling → better maintainability,
independence, reusability, and testability04/12/2025 A. Akca-Okan 47

SE345Atılım University

Cohesion Metrics
Cohesion metrics measure how strongly related and
focused the responsibilities of a single module (e.g., a
class, function, or component) are. In software quality,
cohesion reflects a module’s internal strength.

Cohesion is evaluated by analysing:
• Data objects used in the module (variables, data

structures).
• Where these data objects are defined (their locus of

definition).

A module has high cohesion when:
• Its responsibilities focus on a single task.
• All functions within the module operate on the same set

of internal data.

A module has low cohesion when:
• Its functions operate on unrelated data objects.
• Responsibilities are mixed (e.g., doing calculations,

printing, saving to file).

Types of Cohesion (from weakest to strongest):
• Coincidental
• Logical
• Temporal
• Procedural
• Communicational
• Sequential
• Functional (best)

Examples of Cohesion Metrics:
• LCOM (Lack of Cohesion in Methods): Counts pairs of

methods that do not share common data attributes.
• Tight Class Cohesion (TCC)
• Loose Class Cohesion (LCC)

Quality Meaning: Higher cohesion → better modularity,
easier maintenance, fewer side effects, clearer
responsibility.

04/12/2025 A. Akca-Okan 48

SE345Atılım University

Metrics for Source Code
• Cyclomatic Complexity (McCabe)

Industry studies have indicated that the higher V(G),
the higher the probability or errors.

V(G)

modules

modules in this range are
more error prone

Measures the number of independent execution paths through a program.
Formula:
V(G) = E – N + 2
where:
• E = number of edges
• N = number of nodes
• 2 = number of connected components

High V(G) →more branches →more test cases required.

04/12/2025 A. Akca-Okan 49

SE345Atılım University

Metrics for Source Code
• Maurice HALSTEAD’s Software Science

o n1 = the number of distinct operators

o n2 = the number of distinct operands

o N1 = the total number of operator occurrences

o N2 = the total number of operand occurrences

Length: N = N1 + N2

Volume: V = Nlog2(n1 + n2)

OPERATOR COUNT OPERAND COUNT

IF-Then- end if 1 Z 5

While End-While 1 Y 2

= 5 X 4

; 8 20 1

> 2 -2 1

+ 1 5 1

 - 1 0 2

 print 1 1 1

() 1

n1 = 9 N1 = 21 Length: N = 21+17 = 38

n2 = 8 N2 = 17 Volume: V = 38 log2(17)=155

Z = 20;

Y = -2;

X = 5;

While X>0

 Z = Z + Y;

 if Z > 0 then

 X = X – 1;

 end-if;

End-while;

Print(Z);

04/12/2025 A. Akca-Okan 50

SE345Atılım University

Metrics for OO Design

• Size: Size is defined in terms of four views: population,
volume, length, and functionality

• Complexity: How classes of an OO design are
interrelated to one another

• Coupling: The physical connections between elements
of the OO design

• Sufficiency: “the degree to which an abstraction
possesses the features required of it, or the degree to
which a design component possesses features in its
abstraction, from the point of view of the current
application.”

• Completeness: An indirect implication about the degree
to which the abstraction or design component can be
reused.

• Cohesion: The degree to which all operations working
together to achieve a single, well-defined purpose

• Primitiveness: Applied to both operations and classes,
the degree to which an operation is atomic

• Similarity: The degree to which two or more classes are
similar in terms of their structure, function, behavior, or
purpose

• Volatility: Measures the likelihood that a change will
occur

Whitmire [WHI97] describes nine distinct and measurable characteristics of an OO design:

04/12/2025 A. Akca-Okan 51

SE345Atılım University

Distinguishing Characteristics

• Localisation—the way in which information is
concentrated in a program

• Encapsulation—the packaging of data and processing

• Information hiding—the way in which a secure interface
hides information about operational details

• Inheritance—the manner in which the responsibilities of
one class are propagated to another

• Abstraction—the mechanism that allows a design to
focus on essential details

Berard [BER95] argues that the following
characteristics require that special OO metrics be

developed

04/12/2025 A. Akca-Okan 52

SE345Atılım University

Class-Oriented Metrics
:

Other Types of Design Metrics

Proposed by Chidamber and
Kemerer

• weighted methods per class

• depth of the inheritance tree

• number of children

• coupling between object
classes

• response for a class

• lack of cohesion in methods

Proposed by Lorenz and Kidd
[LOR94]:

• class size

• number of operations
overridden by a subclass

• number of operations added
by a subclass

• specialisation index

The MOOD Metrics Suite

• Method inheritance factor

• Coupling factor

• Polymorphism factor

04/12/2025 A. Akca-Okan 53

SE345Atılım University

Metrics for Testing

• Analysis, design, and code metrics guide the design
and execution of test cases.

• Metrics for Testing Completeness

o Breadth of Testing - total number of requirements
that have been tested

o Depth of Testing - percentage of independent
basis paths covered by testing versus total
number of basis paths in the program.

Metrics for Maintenance

• Software Maturity Index (SMI)

o MT = number of modules in the current release

o Fc = number of modules in the current release that
have been changed

o Fa = number of modules in the current release that
have been added

o Fd = number of modules from the preceding release
that were deleted in the current release

SMI = [MT - (Fc + Fa + Fd)] / MT

• A simple measure of reliability is mean-time-between-failure (MTBF), where

 MTBF = MTTF + MTTR

• The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair, respectively.
• Software availability is the probability that a program is operating according to requirements at a given point in time

and is defined as
 Availability = [MTTF/(MTTF + MTTR)] x 100%

04/12/2025 A. Akca-Okan 54

SE345Atılım University

Metrics Derived from Reviews

inspection time per page of documentation

inspection time per KLOC or FP

errors uncovered per reviewer hour

errors uncovered per preparation hour

errors uncovered per SE task (e.g., design)

number of minor errors (e.g., typos)

number of errors found during preparation

number of major errors
 (e.g., nonconformance to req.)

inspection effort per KLOC or FP

04/12/2025 A. Akca-Okan 55

SE345Atılım University

General limitations of quality metrics

* Budget constraints in allocating the necessary
resources.

* Human factors, especially opposition of employees to
evaluation of their activities.

 * Validity Uncertainty regarding the data's, partial and
biased reporting.

Examples of software metrics that exhibit severe
weaknesses

• Parameters used in development process
 metrics:
 KLOC, NDE, NCE.

• Parameters used in product (maintenance)
 metrics:
 KLMC, NHYC, NYF.

04/12/2025 A. Akca-Okan 56

SE345Atılım University

Factors affecting parameters
used for development
process metrics

a. Programming style (KLOC).

b. Volume of documentation comments (KLOC).

c. Software complexity (KLOC, NCE).

d. Percentage of reused code (NDE, NCE).

e. Professionalism and thoroughness of design
review and software testing teams: affects the
number of defects detected (NCE).

f. Reporting style of the review and testing results:
concise reports vs. comprehensive reports (NDE,
NCE).

a. Quality of installed software and its
documentation (NYF, NHYC).

b. Programming style and volume of
documentation comments included in the
code be maintained (KLMC).

c. Software complexity (NYF).

d. Percentage of reused code (NYF).

e. Number of installations, size of the user
population and level of applications in use:
(NHYC, NYF).

04/12/2025 A. Akca-Okan 57

Factors affecting
parameters used for product
(maintenance) metrics

SE345Atılım University

Process of defining software
quality metrics

Software quality, development
team productivity, etc

Target values: standards, previous
year’s performance, etc.

Reporting process, frequency of
reporting, method(s) of metrics data

collection

04/12/2025 A. Akca-Okan 58

SE345Atılım University

Discussion Question - 1

You want to track the progress of your team and identify potential risks in meeting deadlines.

➔ Number of Requirements Implemented: Tracks how many user stories or features have been coded.
➔ Effort Spent per Requirement: Tracks the time developers spend on individual requirements.

You find that 80 out of 100 requirements have been implemented so far, but the time spent on each is
increasing compared to earlier phases. This indicates …?

04/12/2025 A. Akca-Okan 59

SE345Atılım University

Discussion Question - 2
You want to evaluate how effectively the team is converting resources into deliverables while ensuring quality.

➔ Defect Removal Efficiency (DRE): DRE=(Defects Found and Fixed During Development/ Total
Defects)×100 This metric shows how effective your testing process is.

➔ Code Churn Rate: Measures how much code is added, modified, or deleted over time. %10-20 may be
acceptable. High churn rates may indicate unstable requirements or poor initial design.

Your processing metrics reveal:

● A DRE of 70%, indicates ….?

● %35 code churn rate, signals …?

Your processing metrics reveal:

● A DRE of 70%, indicating 30% of defects are slipping past your testing phase.

● A high code churn rate, signaling significant rework due to changing requirements.

If metrics highlight low DRE (Defect Removal Efficiency), you might decide to improve your testing process or
allocate more resources to testing.

If metrics show delays in requirement implementation, you could address inefficiencies or scope changes
causing the delay.

04/12/2025 A. Akca-Okan 60

SE345Atılım University

Backup Slides

04/12/2025 A. Akca-Okan 61

SE345Atılım University

Software product metrics
Software metric Description

Fan in/Fan-out Fan-in is a measure of the number of functions or methods that call some other
function or method (say X). Fan-out is the number of functions that are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the
design and changes to X will have extensive knock-on effects. A high value for fan-out
suggests that the overall complexity of X may be high because of the complexity of the
control logic needed to coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger the size of the code of
a component, the more complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most reliable metrics for predicting
error-proneness in components.

Cyclomatic complexity This is a measure of the control complexity of a program. This control complexity may
be related to program understandability.

Length of identifiers This is a measure of the average length of distinct identifiers in a program. The longer
the identifiers, the more likely they are to be meaningful and hence the more
understandable the program.

Depth of conditional
nesting

This is a measure of the depth of nesting of if-statements in a program. Deeply nested
if statements are hard to understand and are potentially error-prone.

Fog index This is a measure of the average length of words and sentences in documents. The
higher the value for the Fog index, the more difficult the document is to understand.

04/12/2025 A. Akca-Okan 62

SE345Atılım University

Object-oriented metrics
Object-oriented
metric

Description

Depth of inheritance
tree

This represents the number of discrete levels in the inheritance tree where
sub-classes inherit attributes and operations (methods) from super-classes.
The deeper the inheritance tree, the more complex the design. Many different
object classes may have to be understood to understand the object classes at
the leaves of the tree.

Method fan-in/fan-
out

This is directly related to fan-in and fan-out as described above and means
essentially the same thing. However, it may be appropriate to make a
distinction between calls from other methods within the object and calls from
external methods.

Weighted methods
per class

This is the number of methods that are included in a class weighted by the
complexity of each method. Therefore, a simple method may have a
complexity of 1 and a large and complex method a much higher value. The
larger the value for this metric, the more complex the object class. Complex
objects are more likely to be more difficult to understand. They may not be
logically cohesive so cannot be reused effectively as super-classes in an
inheritance tree.

Number of
overriding
operations

This is the number of operations in a super-class that are over-ridden in a sub-
class. A high value for this metric indicates that the super-class used may not
be an appropriate parent for the sub-class.

04/12/2025 A. Akca-Okan 63

SE345Atılım University

Coupling and Cohesion

Goal: Reduction of
complexity while change
occurs

Cohesion measures the
dependence among
classes

High cohesion: The classes in the
subsystem perform similar tasks
and are related to each other (via
associations) GOOD!
Low cohesion: Lots of
miscellaneous and auxiliary classes,
no associations BAD!!

Coupling measures
dependencies between
subsystems

High coupling: Changes to one
subsystem will have high impact on
the other subsystem (change of
model, massive recompilation, etc.)
BAD!!

Low coupling: A change in one
subsystem does not affect any
other subsystem GOOD!!

Subsystems should have
as maximum cohesion and
minimum coupling as
possible:
How can we achieve high cohesion?
How can we achieve loose coupling?

04/12/2025 A. Akca-Okan 64

SE345Atılım University

Coupling
Indicates the interdependence or interrelationships of the modules

04/12/2025 A. Akca-Okan 65

SE345Atılım University

The Law of Demeter

• An object should only send messages to one of
the following:

– Itself

– An object that is contained in an attribute of
the object or its superclass

– An object that is passed as a parameter to
the method

– An object that is created by the method

– An object that is stored in a global variable

04/12/2025 A. Akca-Okan 66

SE345Atılım University

Cohesion the degree to which a module performs one and only one function.

04/12/2025 A. Akca-Okan 67

SE345Atılım University

Ideal Class Cohesion

Contain multiple methods that are
visible outside the class

1

Have methods that refer to
attributes or other methods
defined with the class or its
superclass

2

Not have any control-flow
coupling between its methods

3

04/12/2025 A. Akca-Okan 68

SE345Atılım University

Types of Class Cohesion

04/12/2025 A. Akca-Okan 69

SE345Atılım University

Other Code Metrics

• Halstead’s Software Science: a
comprehensive collection of
metrics all predicated on the
number (count and occurrence) of
operators and operands within a
component or program

• Lines of Code

• McCabe's Cyclomatic Complexity

Operation-Oriented
Proposed by Lorenz and

Kidd [LOR94]:

• average operation size
operation complexity

• average number of
parameters per operation

Project Metrics
Proposed by Lorenz and

Kidd [LOR94]:

• number of scenario
scripts

• number of key classes
• number of subsystems

Testability Metrics
Proposed by Binder

[BIN94]:

• encapsulation related
o lack of cohesion in

methods
o percent public and

protected
o public access to data

members
• inheritance related
o number of root classes
o fan in
o number of children and

depth of inheritance
tree

04/12/2025 A. Akca-Okan 70

SE345Atılım University

Halstead’s Software Science

04/12/2025 A. Akca-Okan 71

The total number of distinct operators and operands:
𝑛 = 𝑛1 + 𝑛2

1. Program Vocabulary (n)

Total occurrences of operators and operands:
𝑁 = 𝑁1 +𝑁2

2. Program Length (N)

Represents the size of the implementation in terms of
information content:

𝑉 = 𝑁 ⋅ log2 𝑛
3. Program Volume (V)

Indicates how hard the program is to write or understand
based on its operators and operands:

𝐷 =
𝑛1
2
⋅
𝑁2
𝑛2

4. Program Difficulty (D)

The mental effort required to implement or understand the
program:

𝐸 = 𝑉 ⋅ 𝐷
5. Effort(E)

Estimated time (in seconds) to write the program:
𝑇 =

𝐸

18
(Assuming 18 mental operations per second)6. Time to Program (T)

Halstead’s prediction of delivered bugs:

𝐵 =
𝐸2/3

3000

7. Estimated Number of Bugs (B)

	Slide 1: SE345
	Slide 2
	Slide 3
	Slide 4: What to measure
	Slide 5: Measurement, Measures, Metrics
	Slide 6: Theory of Measurement
	Slide 7: Measurement Process
	Slide 8: Measures
	Slide 9: The Software Quality Metrics Framework
	Slide 10: Software Quality Metrics
	Slide 11: Subfactors & Direct Metrics
	Slide 12: Software Quality Metrics
	Slide 13: Types of Metrics (different classifications)
	Slide 14: Types of Metrics – 1st Categorisation
	Slide 15: Product Metrics
	Slide 16: Product Metrics
	Slide 17: The function point method
	Slide 18: Crude function points (CFP) Calculation
	Slide 19: Calculating the relative complexity adjustment factor (RCAF)
	Slide 20: Function Point Method
	Slide 21: The ATTEND MASTER - Data Flow Diagram
	Slide 22: The ATTEND MASTER CFP calculation form
	Slide 23: Calculation of RCAF
	Slide 24: The ATTEND MASTER – function points calculation
	Slide 25: Extended function point metrics Feature Points, UCPs …
	Slide 26: Product Metrics
	Slide 27: Help desk (HD) Quality Metrics
	Slide 28: Corrective Maintenance Quality Metrics
	Slide 29: Corrective Maintenance Productivity and Effectiveness Metrics
	Slide 30: Process Metrics
	Slide 31: Process Metrics
	Slide 32: Quality Metrics - Error Density Metrics Measures & Metrics for Error Counting
	Slide 33: Error Severity Metrics
	Slide 34: Error Removal Effectiveness Metrics
	Slide 35: Project Metrics
	Slide 36: Project Metrics - Monitoring & Control
	Slide 37: Project Metrics Schedule Control
	Slide 38: Project Metrics Cost Control
	Slide 39: Project Metrics – EVA/EVM
	Slide 40: Analysis, Design & Coding Metrics
	Slide 41: Analysis Metrics
	Slide 42: Analysis Metrics - …
	Slide 43: Design Metrics
	Slide 44: Architectural Design Metrics
	Slide 45: Morphology Metrics
	Slide 46: Component-Level Design Metrics
	Slide 47: Coupling Metrics
	Slide 48: Cohesion Metrics
	Slide 49: Metrics for Source Code
	Slide 50: Metrics for Source Code
	Slide 51: Metrics for OO Design
	Slide 52: Distinguishing Characteristics
	Slide 53: Class-Oriented Metrics
	Slide 54: Metrics for Testing
	Slide 55: Metrics Derived from Reviews
	Slide 56: General limitations of quality metrics
	Slide 57: Factors affecting parameters used for development process metrics
	Slide 58: Process of defining software quality metrics
	Slide 59: Discussion Question - 1
	Slide 60: Discussion Question - 2
	Slide 61: Backup Slides
	Slide 62: Software product metrics
	Slide 63: Object-oriented metrics
	Slide 64: Coupling and Cohesion
	Slide 65: Coupling
	Slide 66: The Law of Demeter
	Slide 67: Cohesion
	Slide 68: Ideal Class Cohesion
	Slide 69: Types of Class Cohesion
	Slide 70: Other Code Metrics
	Slide 71: Halstead’s Software Science

