
CHAPTER ONE 
ARITHMETIC 

Convert Basic Units between Imperial and SI Units 

Since 1971 when the British monetary system was decimalised, more and more 
units have changed from the Imperial system to the Metric system, but not all. 
There is still a necessity therefore to have a means of changing from one 
system to another so that comparisons can be made. 

T he most common equivalents are: 

Imperial Metric 

1 Gallon 4.55 Litres 

1 Inch 2.54 centimetres 

1 Foot 30.48 centimetres 

1 Yard 0.91 4 metres 

1 Mile 1.609 Kilometres 

1.76 Pints 1 Litre 

2.205 lbs 1 Kilogramme 

0.6215 miles 1 Kilometre 

If a rough conversion only is requested then the above becomes: 

Imperial Metric 

1 Gallon 4.6 Litres 

1 Inch 2.5 centimetres 

1 Foot 30 centimetres 

1 Yard 1 metres 

1 Mile 1.6 Kilometres 

1.75 Pints 1 Litre 

2.2 lbs 1 Kilogramme 

0.62 miles 1 Kilometre 

Example 1 

G iven that 1 kg = 2.2lb, change 40 kg into pounds. 

If 1 kg = 2.2 lb 

Then 40 kg = 40 x 2.2 lb 

= 88lb 
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Example 2 

Find the number of kilometres in 50 miles. 

Example 3 

Since 1 mile= 1.6 km (approx.) 

Then 50 miles = 50 x 1.6 km 
= 80km 

Convert 8 litres into pints. 

Example 4 

The 1litre = 1.75 pints (approx) 

8litres = 8 x 1.75 pints 

= 14 pints 

Convert 50 litres into gallons. 

68 

Since 4.55 litres = 1 gallon 

1 Then 1 litre = - gallon 
4.55 

and 50 litres = 1 
4.55 

X 50 

= 10.99 gallons 

Roughly 11 gallons 
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Example 5 

Convert 9lb into kilograms. 

Example 6 

Since 2.2 lb = 1 kilogram 

1 
T hen 1 lb = 2_2 kg 

1 and 9 lb = - x 9 kg 
2.2 

= 4.1 kg (l dp) 

Convert 60 em to inches 

Example 7 

Since 2.54 em = 1 Inch 

T hen 1 em = - 1- inches 
2.54 

and 60 em = 1 
2.54 

x 60 inches 

= 23.6 inches 

Convert 120 km into miles. 

Since 1 km = 0.625 miles 

Then 120 km = 0.625 x 120 miles 

= 75 miles 
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Perimeters 

A plane figure is a two-dimensional shape bounded by straight lines. 

Scm 

Trapezium 

1S em 
Scm 

Square Scm 

12 em 

Rectangle Scm 

10 em 

Parallelogram 

Triangle 

Scm 

The perimeter of such shapes is the distance around the outside of the figure 
(i.e. the total length of its sides). 

The units of perimeter are linear units - millimetres (mm), centimetres (em) or 
metres (m). 

So, from the diagrams: 

a) Perimeter of square = (S + S + S + S) em = 20cm 

b) Perimeter of rectangle = (12 + S + 12 +S) em = 34cm 

c) Perimeter of parallelogram = (10 + 6 + 10 + 6) em= 32cm 

d) Perimeter of trapezium = (S + 8 + 1S + 6) em = 34cm 

e) Perimeter of triangle = (7 + 7 + 8) em = 22cm 
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Circumference 

This is the distance around the outside of a circle. 

CHAPTER ONE 
ARITHMETIC 

Circumference (C) 

Le. c 

2 x n x r [ 11: = 2
7
2 or 3.142] 

2nr or n:d (since 2r = d) 

Example 1 

Find the circumference of a circle that has a radius of 14 em. 

Example 2 

C= 2xn:xr 

= 2 X 22 X 14 
7 

= 2 X 22 X J4' ;r 2 
1 

= 2 X 22 X 2 

= 88 em 

Find the circumference of a circle whose diameter is 7 em. 
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Example 3 

C = nxd 

= 
;{ 1 

1 

= 22cm 

Find the circumference of a circle that has a radius of 3.8cm. 

C =2 xnx r 

C = 2 X 3.142 X 3.8 

C = 23.88cm (2 dp) 

Area 

1 square centimetre (cm2) is the area contained within a square that has a side 
of 1 centimetre (em). 

1 cm2 
(1 square centimetre) 

1cm 

1 em 

Similarly 1 square metre (m2) is the area contained within a square that has a 
side of 1 metre (m) and similarly 1 square millimetre (mm2) is the area 
contained within a square of side 1 millimetre (mm). 

So, the area of a plane figure is found by measuring the number of mm2 or cm2 

or m2 within it. 

Now 10 mm = 1 em 

100 em= 1 metre 

(from which we see 1000mm = 1 metre) 
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The Rectangle 

CHAPTER ONE 
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Consider a rectangle that has a length of Scms and a width (breadth) of 3cm. 

Scm 

!I em 

... 
1cm 3cm 

N ow each small square within the rectangle has an area of 1cm2 • Since there 
are 1S of these, the area within this rectangle must be 1S x 1 cm2 = 1Scm2 

The same result could have been achieved by multiplying Scm X 3cm = 1Scm2 

So 
Area of a rectangle= length x width (breadth) 9, 

..L,.:.. 

tDI 
Note: The units of length and width must be the same. They must both be in, 
mms, em, or m. 

Example 1 

Find the area o f the following rectangle. 

I IIIII 15 em 

,-----------------------------,_, 

7cm 

Area = length x width 

= 1Scm x 7cm 

= 10S cm 2 
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Example 2 Find the area of the rectangle. 

80 em 

Since the units are different, we must change the metres to centimetres or the 
centimetres to metres before proceeding. 

i.e. Area = 1.5m x O.Sm or Area = 150cm x SO em 

= 12000cm2 

Students still make the mistake of assuming that since there are 1 OOcm in a 
metre there must be 100cm2 in 1m2• This is incorrect. To explain this, consider 
three identical squares of side 1 metre. 

1m 

1m 

(a) 

100 em 
+-m 

(b) 

100 em 
-1-m 

1000 mm 

14 +-m ... 1 

(c) 

1000 mm 
+-m 

As shown, square (a) has its sides in metres, but square (b) could have its sides 
in centimetres (since 1m = 100cm) and square (c) could have its sides in 
millimetres (since 1m=1000mm). 

When we find the area of each:-

a) 1m x 1m b) 100cm x 100cm c) 1000mm X 1000mm 

=10000cm2 =1000000mm2 

These must be equal so: 

To change 1m2 to cm2 we multiply by 10,000 

To change 1m2 to mm2 we multiply by 1000,000 

To change 1cm2 to mm2 we multiply by 100. 

(100 X 100) 

(1 000 X 1 000) 

(10 X 10) 

As you can see these conversion factors are the squares of the linear ones (see 
brackets). 
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T o go in the opposite direction, we divide: 

To change cm2 to m 2 we divide by 10,000 

T o change mm2 to m 2 we divide by 1000,000 

To change mm2 to cm2 we divide by 100. 

CHAPTER ONE 
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Not all shapes are straightforward rectangles, as shown in the following 
example but they can be split up into rectangles. The area of the shape is then 
found by finding the area of each rectangle and then adding them together. 

® Scm 
2cm 

© I em 

, ... 10 em 

Area of A = 6cm x 2cm = 12cm2 

Area of B = Scm X 2cm = 16cm2 

Area of C = 10cm x 4xm = 40cm2 

Area o f shape = 12cm2 + 16cm2 + 40cm 2 = 6Scm2 

The Triangle 

H eight 

Base 
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Area of a triangle = one half the base x perpendicular height 

Example 1 

Find the areas of the following triangles. 

(a) 

Scm 

a) Area = 1/ z x 8 x 3. 5 
= 14cm2 

The Parallelogram 

.. I 

b) Area = 1/ z x 8.6 x 2.8 
= 12.04mm2 

This is a four sided figure which has both pairs of its opposite sides equal and 
parallel. 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

Because of this, a parallelogram can be divided into two identical triangles by 
drawing in a diagonal (dotted line). 

Area o f a parallelogram = 2 X area of one of the triangles. 

If area of a triangle = one half the base X perpendicular height 

Then area of parallelogram = 2 x one half the base x perpendicular height 

Area of a parallelogram = base x perpendicular height 
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Example 1 
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Find the area of a parallelogram that has a base of 12cms and a height of Scm 

Scm 

12 em 

Area of parallelogram = 12cm x Scm= 96cm2 

Example 2 

A parallelogram has an area of 160cm2 and a base of 16cm. What is the height 
of the parallelogram? C6 

-o 
._L. 

J,· 
Since area of parallelogram base x height 1: 

l[j 

Then height 
area 
base 

160 
16 

= 10cm 

The Trapezium 

This is a four-sided figure that has one pair of opposite sides parallel. 

:Height 

Area of Trapezium = 1;2 x Sum of Parallel x Perpendicular Distance 
Sides between them 
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Example 

Find the areas of the following trapezium: 

(a) 
(b) 

12 em 

18cm 

15 em 

I 
I 
I 
1 10 em 

a) Area = 1/z (6cm + 18cm) X 12 = 1/z X 24cm X 12cm = 144cm2 

b) Area= 1/z (15cm + 7cm) X10cm = 1/ z x 22cm x 10cm = 110cm2 

The Circle 

22 
Where n=- or 3.142 

7 

Example 1 

Area of a circle = 7tr2 

r =radius 

Find the area of a circle that has a radius of 7cm. 

78 

Area= 22 
;;r1 

1 
x:::tx 7 = 154cm2 
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Example 2 

Find the area o f a circle that has a diameter o f 28cm. 

diameter 28 
N ow since diameter = 2 x radius then radius = = - = 14cm 

Example 3 

2 2 

Area= 22 X 14 X 14 = 616cm2 

7 

Find the radius o f a circle that has an area o f 154cm2 • 

Volume 

Area= 7tr2 

Area -- =rz n 

r = {154 
-}JI42 

r =7cm 

T his is measured by finding how many cubic units a solid shape contains. 

For example, the amount o f space that is taken up by a solid shape. 

Unlike plane figures, solids have an extra dimension. (They are 3D as opposed 
to 2D so solids have length , breadth and height. 

Example 

Consider a cube that is solid with six square sides. Since the sides are squares, 
the length, breadth and heigh t are all equal. 
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So 1 cubic centimetre (cm3) is the volume of a cube that has a side of 1cm. 

i.e. Volume= 1cm x 1cm x 1cm x = 1cm3 

1cm 

1 em 

Consider a cuboid rectangular solid that has a length of 4cm, a width of 3cm 
and a height of 3cm. Each small cube has a volume of 1cm3 . 

/ / / / / 
/ / / / / 

/ / / / / 

v / 
/ 

3cm v / 
/ 

Now each layer contains 4 x 3 (12 cubes). 

Since there are 3layers, the shape contains 3 x12 = 36 cubes. 

Volume of the shape= 36 cubic units= 36cm3 . 

The same result could have been achieved by multiplying : 

4cm x 3cm x 3cm = 36cm3• 

As for area, the units of length, width and height must be the same: 

They must all be in mm, em or m. 

So volume of a cuboid = length X breadth X height 

Now since the area of the end of a rectangular solid 1s g1ven by 
length x breadth, we can write:-

Volume of Rectangular solid (cuboid) = Area of End x H eight 
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This is true for any regular solid (i. e. one that has a constant cross section 
throughout its height.) 

For regular solids, we may write: 

Area of Constant Volume of solid = x 
Cross Section 

length or height 

i.e. Length is synonymous with height in these cases, because if you consider 
the following cuboid:-

Area of E nd =15cm X 15cm = 75cm2 

Volume = area of end x length 

= 75cm2 x Scm 

= 600cm3 

Scm 

Scm 
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Area of End = Scm x Scm = 40cm2 

Volume = area of end x length 

= 40cm2 x 15cm 

= 600cm2 

In other words, the same result is obtained. 

If we now consider the shapes whose areas we found earlier and add the third 
dimension to them we get:-

Volume of Shape 

= area of square x length 

= a x a x length 

Volume of Shape = area of rectangle x length = a x b x length = abl units3 

Volume of Shape 

= area of triangle x length 

= lJz x base x height x length 

= 1/z bhl units3 
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Volume of Shape = area of parallelogram x length 

= (base x height) X length 

= bhl units3 

Volume o f Shape = area of trapezium x length 

= C/z (a+b) x h) x length 

= 1/z (a+b) x h x 1 units3 

Volume o f Shape = area of circle x length 

Examples 

V = (3 X 3) X 8 

V = 72cm3 

3 em ., 

L 
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V = (2 X7) X 5 

V = 70cm 3 

V = (1/z X 8 X 5) X 10 

V = 200cm3 

V = (Vz (8+5) X4) X12 

V = 312cm3 

v = (12 X5) X15 

V = 900cm3 

V = (3.142 X 4 X 4) X 8 

V = 402.2cm3 (1dp) 
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Sphere 

Example 1 

Volume of sphere= .± x m 3 (r is the radius) 
3 

Calculate the volume of a sphere that has a radius of 2.46cm. 

Volume 

Example 2 

4 
X 3.142 X 2.463 

3 

3 62.4cm (1 dp) 

Calculate the radius of a sphere that has a volume of 400cm3. 

Since Volume= 
4 
- n: r3 
3 

then 400 
4 
- X 3.142 X r3 
3 

Le. 400 = 4.19 x r3 

400 = r3 
4.19 

95.48 = r3 

r = V9s .4s 

r = 4.57cm 
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Surface area of a sphere 

Surface area of a sphere = 4rrr2 

Example 3 

Calculate the surface area of a sphere, which has a diameter of 12 em. 

Surface area = 4m2 

= 4 X 3.142 X 6 X 6 

= 452.45 cm2 (2dp) 

Cone 

1 2 Volume of Cone=- rrr h 
3 

Example 1 

Find the volume of a cone of radius 2cm and length Scm. 

= 1j X 3.142 X 2 X 2 X 5 

= 1j X 62.84 

= 20.95cm3 (2 dp) 

Example 2 

The volume of a cone of radius 4cm is 101cm3. Find the height. 

101 = 1j X 3.142 X 4 X 4 X h 

101 = 16.76 X h 
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h = 101 
16.76 

h = 6.0cm (1 dp) 

Curved surface area of a cone 

curved surface area of a cone = nrl cm2 (I= slant height) 

Total surface area of a cone 

Total surface area of a cone = rrr2 + rrrl 
(including base) 

= nr(r + cm2 

e.g. A cone has a diameter of 70mm and a vertical height of 1 OOmm. Calculate 
the total surface area. 

I 

100mm 

35mm 

To find the slant height I, we use Pythagoras theorem. 

12 = 1002 + 352 

12 = 10,000 + 1225 

I = .r11,225 

I = 105.95 mm (2dp) 

So the total surface area = (3 .142 x 35 x 35) + (3.142 x 35 x 105.95) 

= 15500.27mm2 (2dp) 
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Cylinder 

Volume of Cylinder= m 2h 

Example 

Find the volume of a cylinder of 
height Scm and radius 3cm. 

= 3.142 X 3 X 3 X 8 

= 226.2cm3 (1dp) 

Curved Surface Area of a Cylinder 

Example 

Curved Surface Area = 2n:rh 
(ie circular ends 
excluded) 

Total Surface Area = 
(ie circular 
ends included) 

= 2n:r2 + 2n:rh 

--- ----------

2m 

+2nrh+ 

h 

h 

Calculate the total surface area of a solid cylinder of radius 4cm and height 
10cm. 

Curved surface area = 2 n r h 

Area of circular ends = 2 x nr 2 

Total surface area = 2 n r h + 2 nr2 

= (2 X 3.142 X4 X10) + 2 (3.142 X 42) 

= 251.36cm2 + 100.54cm2 

= 351.9cm2 
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Revision 

Arithmetic 

Questions 

1) Eighteen thousandths, written as a decimal is: 

a. 0.0018 

b. 0.018 

c. 0.18 

2) 40 divided by% is equal to: 

a. 5 

b. 320 

c. 1/5 

3) The next number in the sequence 1, 3, 6, 10 is: 

a. 11 

b. 13 

c. 15 

4) The value of [(-1)- (-1)] -1 is: 

a. -2 

b. -1 

c. 0 
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5) 7 X 6 - 12 -7- 3 + 1 is equal to: 

a. 39 

b. 28 

c. -44 

6) If £182.50 is shared equally between 5 people, how much would 
each person receive: 

a. £35.50 

b. £37.50 

c. £36.50 

7) The arithmetic mean of ten numbers is 36. If one of the numbers 
is 18, what is the mean of the other nine. 

a. 32 

b. 36 

c. 38 

8) Three thousand and forty nine written in numbers is: 

9) 

90 

a. 3,490 

b. 30049 

c. 3049 

. 2 3 If the fracttons -
5 7 

and .!_ arranged in order of size, smallest 
3 

first, the order would be: 

2 1 3 
a. 

5 ' 3' 7 

1 2 3 
3' 5 ' 7 

b. 

3 2 1 
c. 

7' 5' 3 
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10) 

a. 

b. 

c. 

11) 

a. 

b. 

c. 

12) 

2 3 . 
3 - + 4 - ts equal to: 

3 5 

1 
7-

3 

13 6-
15 

4 8-
15 

1 1 . 2 - x 1- ts equal to: 
2 3 

5 
6 

a. 

b . 

1 
2-

5 

2_!_ 
6 

1 
3-

3 

1 . - ts equal to: 
3 

5 
2 

5 
18 

1 
c. 2-

2 
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13) The number 46700 when written in Standard Form is: 

a. 46.7 X 103 

b. 4.67 X 104 

c. 4.67 X 105 
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14) When written in Standard Form 0.00075 is equal to: 

a. 75 X 10 - S 

b. 7.5 X 10 --4 

c. 0.75 X 10-3 

15) 3 x 102 x 2 x 104 is equal to: 

a. 6 x 108 

b. 6 X 106 

C. 6 X 10-2 

16) 4 x 106 -:- 2 x 103 is equal to: 

a. 

b. 

c. 2 X 10-3 

17) Which of the following is a prime number: 

a. 15 

b. 27 

c. 41 

18) 2, 3 and 5 are the factors of : 

a. 6 

b. 10 

c. 30 
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19) The HCF of 20, 30 and 60 is: 

a. 2 

b. 10 

c. 20 

20) The LCM of 2, 4, 5 and 6 is: 

a. 240 

b. 60 

c. 6 

CHAPTER ONE 
ARITHMETIC 

21) If 1 km = 0.6 miles, then 66 miles is equivalent to: 

a. 110 krn 

b. 1100krn 

c. 11krn 

22) If £120 is divided in the ratio 2 : 3, then the larger share is: 

a. 

b. 

£48 

£80 

c. £72 

23) If 50% of a certain length is 500mm, the complete length is: 

a. 250mm 

b. 1000mm 

c. 100mm 
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24) What is the square root of 16 x 64: 

a. 40 

b. 32 

c. 256 

25) The difference between 23 and 32 is: 

a. 9 

b. 1 

c. 17 

26) What is 0.0059 correct to 2 decimal places: 

a. 0.01 

b. 0.10 

c. 0.006 

27) Correct to 2 significant figures 3.0394 is: 

a. 3.0 

b. 3.04 

c. 3.03 

28) How many square centimetres are there in a square metre: 

a. 100 

b. 1000 

c. 10,000 
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29) A triangle has an altitude of 50mm and a base of 20mm. Its area 
is: 

a. 250mm2 

b. 0.25cm2 

c. 500mm2 

30) Oil is sold in a closed cylindrical container whose diameter is 
7cm and whose height is 10cm. How much oil does the can hold: 

a. Less than 0.4 litres 

b. 0.5 litres 

c. More than 1 litre 
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Revision 

Arithmetic 

Answers 

1. B 

2. B 

3. c 
4. B 

5. A 

6. c 
7. c 
8. c 
9. B 

10 c 
11. c 
12. c 
13. B 

14. B 

15. B 

16. B 

17. c 
18. c 
19. B 

20. B 
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21. A 

22. c 
23. B 

24. B 

25. B 

26. A 

27. A 

28. c 
29. c 
30. A 
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Basic Algebra 

Introduction 

CHAPTER TWO 
BASIC ALGEBRA 

In algebra we use letters as well as numbers to represent quantities. The 
following examples show how phrases involving associated quantities are 
translated into algebraic expressions. 

a) Eight times a number 

Let the number be x 

:. eight times the number = 8 x x = 8x 

b) Five times a number minus three 

Let the number be y 

:. five times the number minus three = Sy - 3 

c) Three times the product of two numbers . 

Let the numbers be x and y 

three times the product of x and y = 3xy 

d) Four times a number minus three times another number. 

Let the first number be a and the second b 

:. Four times a number a minus three times another number b =4a - 3b 

e) One number divided by another. 

Let one number be x and the other y 

: . one number divided by another 
X 

y 
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CHAPTER TWO 
BASIC ALGEBRA 

f) The sum of two numbers divided by a third number 

Let the numbers be a, b and c. 

:. The sum of two numbers divided by the third= a+ b 
c 

Algebraic Expressions, Equations And Identities 

An algebraic expression is a collection of letters or symbols separated by 
arithmetical operators. 

+ - X 

For example: 2x3 + 4x + 6 is an algebraic expression. 

We can only find the value of it when x is given a specific value. If we give a 
value of 2 to x then:-

2(2)3 + 4(2) + 6 = 16 + 8 + 6 = 30 

An algebraic equation involves an 'equals' sign (a statement of equality). 

For example: 6r - 5 = 19 

The statement of equality i.e. the equation only holds for a specific value of r. 

t.e. 6r =19 + 5 

6r =24 

24 
r=-

6 

r =4 

An algebraic identity differs from an equation in that it is true for every value 
of the variable. 

For example: 

If we substitute 

x2 - 9 = (x + 3) (x - 3) 

X = 8 

82 - 9 = (8 + 3) (8 - 3) 

64 -9 = (11)(5) 

55 =55 

This is the case for any value of x. 
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Substitution 

CHAPTER TWO 
BASIC ALGEBRA 

This is the process of finding the numerical value of an algebraic expression by 
replacing the symbols or letters in it by given values . 

Example 1 

If a = 2 b = 3 and c = 5 find the values of:-

a)3a+2b+4c b)Sa - c c) 15- a 

a) 3a + 2b + 4c 

= 3(2) + 2(3) + 4(5) 

=6 + 6 + 20 

=32 

b) Sa-c 

= 5(2) -5 

=10 - 5 

=5 

c) 15 - a 

=15- 2 

=13 

Example 2 

If x =5 y =-2 and z =3 find the values o f: -

a) Sx- 3y b)4y- z c) z- Sy 

a) Sx- 3y 

= 5(5) - 3(-2) = 31 

b) 4y - z 

= 4(-2)- 3 - -11 

c) z- Sy 

= 3- 5(-2) = 13 
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CHAPTER TWO 
BASIC ALGEBRA 

Evaluation of Formulae by Substitution 

The formula E = IR can be described as a formula for E in terms of I and R. 
The only way we can find a numerical value for E is by substituting given 
values of I and R into it. 

Example 1 

p = Fs 
t 

Example 2 

I= V 
R 

Example 3 

This formula is used in the mechanical engineering field. 

Find the value ofP when F = 30, S = 10 and T = 2. 

P = Fs 
t 

p = 30 X 10 
2 

p = 150 

This formula is used to find the current in an electrical circuit. 

Find the value of I when V = 240 and R = 20 

I= V 
R 

I= 240 
20 

I= 12 

When n cells are connected in series, the following formula is used to find the 
current: 

I = nE 
R+nr 

Find the value of this current when E = 1.8, n = 6, r =1.1and R= 0.4 

100 

I = 6 X 1.8 
0.4 + 6(1.1) 

I= 10.8 
7 

I = 1.54 
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Example 4 

CHAPTER TWO 
BASIC ALGEBRA 

This is the formula for the total resistance when two electrical resistances are 
wired in parallel: 

1 
R 

Find the value of R when R1 = 10 and R2 = 15. 

1 1 1 - -+ -
R 10 15 

1 3+2 --
R 30 
1 5 -
R 30 

Cross Multiplying: 

5R = 30 
R=6 

Example 5 

The acceleration of a train 'a' is found by using the formula: 

Find 'a' when v = 20, u = 10 and s = 5 

a= 

a = 

a= 

202 - 102 

2x5 
400 - 100 

10 
300 
10 

a= 30 
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Example 6 

The distance travelled 's' by an accelerating aircraft is given by: 

s = ut + Vzat2 

Find's' when u = 4, t = 150 and a= 0.2 

Le. 

Example 7 

s = ut + Vzat2 
s = 4(150) + (Vz(0.2) X 150 X 150) 
s = 600 + (0.1 X 22500) 

s = 600 + 2250 

s = 2850 

The surface area of a cylinder is given by: 

s = 2n:r(r + h) 

Finds when r = Scm, and h = 15cm. (Take :rr as 3.142) 

Le. 

Example 8 

The formula: 

s = 2 X 3.142 X 5(5 + 15) 
s = 31.142 X 20 
s = 628.4cm2 

c = l(F - 32) 
9 

is used to convert degrees Fahrenheit (F) to degrees Celsius (C). Convert to 
degrees Celsius 86°F. 

102 

c = (86- 32) 
9 

c = 
C = 30°C 
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Transposition of Formulae 

If we consider the formula: v = u + at 

then v is said to be its subject. 

CHAPTER TWO 
BASIC ALGEBRA 

By rearranging this formula, we can make u, a or t the subject. This process is 
called transposition offonnulae or quite simply changing the subject 

The algebraic terms in a formula can be connected by the four arithmetical 
operations ( + - x --'-- ) as well as by roots and powers . 

There are rules for transposing a formula and they should be carried out in a 
specific order: 

a) Get rid of square roots or other roots. This is accomplished by 
squaring or raising both sides of the formula to another power. 

e.g. 
If a=foc 

then squaring both sides a2 = be 

b) If any fractions are present, then they can be removed by the 
of cross multiplication. -:9-0. 

e.g. 

If X a 
y b 

then xb = ya 

iDl 
Q 

" :J c.. 
< "' r;-

0 
;/;1:::::: 

c) Process (b) sometimes results in brackets being formed. 
be removed, i.e. expanded 

" tv 
These must::;" 

e.g. 
2R 

If V = 
R- r 

Cross multiplying 

V(R- r) = 2R 
ie VR- Vr = 2R 

d) The required subj ect may appear in more than one place in the 
formula. This is not allowed so the subj ect terms must be collected 
together. 

e.g. 
If VR - Vr = 2R and R is the required subject then 

VR- 2R = Vr (Transferring terms to the 
other side and changing sign) 
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CHAPTER TWO 
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e) Process (d) could lead to the need to factorise. 

e.g. 
If VR- 2R = Vr 

then R(V - 2) = Vr 

f) The fmal stage is to isolate the new subject. 

e.g. If R(V- 2) = Vr 

then 
v- 2 

ie Dividing both sides by the bracket (V- 2). 

Although there are six steps listed above, in many cases they will not all be 
needed. However, it is good practice to maintain the order given. 

Example 1 

Transpose 
5 y = for x 

3+ x 

In this case there are no roots present and so the first step would be to get rid 
of fractions. 

• Cross multiplying y(3+x) = 5 

• A bracket has now been formed and this should be expanded: 
3y + xy = 5 

• There is now one term which contains x, so xy = 5 - 3y 

• Finally x is isolated by dividing both sides by y: 

x = 5- 3y 
y 

104 

or x= 2.-3 
y 
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Example 2 

Transpose 
y = 3x + 2 for x 

x + 3 

CHAPTER TWO 
BASIC ALGEBRA 

There are no roots present and so the first step is to get rid of fractions: 

• Cross multiplying y(x+ 3) = 3x + 2 

• The next step is to expand the bracket: xy + 3y = 3x + 2 

• The required subject x appears in two places and so these terms must 
be collected together xy - 3x = 2 - 3y 

• Factorising we get x(y- 3) = 2 - 3y 

• Finally dividing both sides by the bracket (y - 3) we get: 

- 2- 3y 
X - --

(y - 3) 

Note: It is in order for y to appear in two places because it is not the subject 
of the formula. If you look at the original formula above there was only one y 
when it was the subject. 

Let us now look at an example in which all six stages need to be processed: 

Example 3 

Transpose 

x= fory Jy+l 

a) Get rid of square root. 

Squaring both sides: 

xz = 1....::..2_ 
y + 1 
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CHAPTER TWO 
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b) Get rid of fractions. 

c) Expand brackets 

2- y - 1 
X---

y+1 
Cross multiplying 

x2(y+ 1) = y-1 

x2(y + 1) = y - 1 

x2y + x2 = y- 1 

d) Collect terms containing subject 

e) Factorise 

y(x2 - 1) = - 1 - x2 

f) Isolate the subject 

This is a litde untidy because of the minus signs so multiply top and bottom of 
the right hand side by -1 , to give:-

Addition and Subtraction of Algebraic Terms 

If you had two fruit bowls, one with five oranges in it and the other with 3 
oranges in it, you would have 8 oranges altogether. 

However, if you had one fruit bowl with 2 apples in it and another with 3 
bananas in it, you would have 2 apples and 3 bananas. 

Algebra is very similar to this in that only like terms can be added or 
subtracted. 

Like terms are numerical multiples of the same algebraic quantity. 
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For example, 

Examples 

1) Sa + 3a + 2a = 1 Oa 

2) 8x- Sx = 3x 

3) 6p - 8p = -2p 

4) -2q - Sq = -7 q 

2 Sa, 26a, -1 .Sa, - a s 

CHAPTER TWO 
BASIC ALG E BRA 

are four like terms 

An expression such as 3a + 2b - c is an expression consisting of three unlike 
terms and this cannot be simplified further. 

It is possible however to have an expression consisting of several sets of like 
terms. In this case each of the sets can be simplified. 

Examples 

1) Sp + 2q - 3r + 2p - Sq + 6r 

= Sp + 2p + 2q - Sq - 3r + 6r 

= 7p - 3q + 3r 

2) 6a + 3b + 4c - Sa+ 2b - 3c 

= 6a - Sa + 3b + 2b + 4c- 3c 

= -2a + Sb + c 

Multiplication of Algebraic Quantities 

When multiplying algebraic terms together then: 

• Multiply the numbers (if present) 

• Multiply the letters or symbols 

• Multiply the signs 
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CHAPTER TWO 
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A good method of sorting out the signs in an algebraic multiplication is to 
count the number of negative signs involved. 

a) If the overall total is an odd number then the answer is minus(-) 

b) If the overall total is an even number then the answer is plus(+) 

Examples 

1) 2 X -p X 5 x r x -q = 10prq (2 minus signs present- even) 

2) -3 x a x - 2 x b x -5 x c = -30abc (3 minus signs present- odd) 

3) 4a x 3b = 12 ab 

4) -2a x Sb = -10 ab 

5) 3a x -Sb x -c = 15 abc 

6) -3p X -2q = 6 pq 

When multiplying the same letters or symbols then indices are used:-

Examples 

2 1) 3a x 2a = 6a 

- 2 2) -Sp X 2p- -lOp 

- 2 3) -4x x -3x - 12x 

4) Sm x -3m= -15m2 

5) 2a x -3a x Sa = -30a3 
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Division of Algebraic Quantities 

CHAPTER TWO 
BASIC ALGEBRA 

When algebraic expressions are divided it is often possible to cancel between 
numerator and denominator. This is the same as dividing top and bottom by 
the same number or symbol. 

Examples 

1) 

2) 

3) 

4) 

5) 

+a a a +-
+b b b 

-4p 4p 
3q 3q 

-7x 7x 
= +-

7x 
8y -8y 8y 

Sx Sx 
- -
-3y 3y 

1 1 
4a2b .A'x.i!xaxl6' --
8ab2 .8'x.i!xl6'xb 

2 1 1 

1 
a 

2b 
c;; 

3 1 1 1 
-() 

12p2q2r _ Wx.pxpxqxqxt' 3pq 6) 
4pqr .tx}6xqxt' 1 

= 3pq ([j) 

1 1 1 1 

Note: D ivision of algebraic quantities is dealt with in more detail in algebraic 
frac tions. 

Brackets 

Sometimes it is useful to group terms together especially when we want to 
multiply an expression by a number or symbol. Brackets are used to do this. 
For example, if we wanted to multiply the expression 3x + 2y by 4, we would 
write 4 (3x + 2y) . 

When brackets are removed (i.e. expanded), each term inside the bracket is 
multiplied by the quantity outside the bracket. Care must be taken with the 
signs when doing this. 

Remember: 
(+)X(+) = (+) 

(+)X(-)=(-) 

(-)X(+)=(-) 

(-)x(-)=(+) 
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Examples 

1. 3(a +b) = 3 Xa + 3 Xb =3a + 3b 

2. 4(x - y) = 4 X X - 4 X y = 4x - 4y 

3. a(b + c) = a x b + a x c = ab + ac 

4. 3p(2q- 5) = 3p X 2q- 3p X5 = 6pq- 15p 

5. -3(a +b) = (-3 x a) + ( -3 x b) = -3a- 3b 

In the case where there is just a sign outside the bracket, - (a+ b), it is best to 
imagine a 'one' there. 

For example, -(a+ b) =- 1(a +b) = (- 1 x a) + (- 1 x b) =-a - b 

-(a- b)= -1 (a- b) = (-1 x a)- (-1 x -b) =-a+ b 

Some expressions contain more than one bracket. These can be removed i.e. 
(expanded) separately and the expression simplified, i.e. (like terms added or 
subtracted). 

Example 1 2 (3x + 4y) + 3 (2x + 3y) 

= 6x + 8y + 6x + 9y 

= 12x + 17y 

Example 2 3 (4x + 5y) -2 (2x + 3y) 

=12x+15y- 4x - 6y 

=8x + 9y 

Example 3 5 (3a -2b) -2(a +4b) 

= 15a - lOb - 2a - 8b 

=13a- 18b 

Example 4 p(q + r)- q(p - r) 

=pq + pr - qp + qr 

=pr + qr 

Note: pq is the same as qp and ab the same as ba and so on. 
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Example 5 3(a - b)- 2 (2a- 3b) 

= 3a - 3b - 4a + 6b 

=-a+ 3b 

Example 6 2 x (x -5) - x(x -2) - 3x(x - 5) 

= 2x2 - 1 Ox - x2 + 2x - 3i + 15x 

= -2x2 + 7x 

Factorisation 

CHAPTER TWO 
BASIC ALGEBRA 

An expression such as 2x + 2y has the number 2 common to both terms. 

Le. 2x + 2y = 2(x + y) 

This is the reverse procedure of expanding brackets. The number 2 and the 
bracket (x + y) are called the factors of 2x + 2y. The easiest way to factorise 
an expression is to write out the expression in full breaking down the 
into prime numbers (if they are not prime to start). -9--:i 

"% 
@ 

For example, 4 = 2 x 2 6 = 2 x 3 8 = 2 X 2 X 2 9 = 3 X3 (and so on). Q 

" " CL .... ,-
"' Example 1 
[l 

If we breakdown 8 and 12 into prime numbers and write out the expression in l 
tv 

full we get: '-.::? 

Factorise 8p + 12q 

Now highlight numbers or letters which appear in both terms: 

(2) X (2) X 2 X p + (2) X (2) X 3 X q 

So (2) x (2) = 4 and this is placed outside the bracket. The unhighlighted 
parts which are left form the bracket. (In this case 2p + 3q). These are the 
factors of 8p + 12q. 

8p + 12q = 4(2p + 3q) 

""' factors 
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